Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland.
Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giad111.
Machine learning (ML) has emerged as a vital asset for researchers to analyze and extract valuable information from complex datasets. However, developing an effective and robust ML pipeline can present a real challenge, demanding considerable time and effort, thereby impeding research progress. Existing tools in this landscape require a profound understanding of ML principles and programming skills. Furthermore, users are required to engage in the comprehensive configuration of their ML pipeline to obtain optimal performance.
To address these challenges, we have developed a novel tool called Machine Learning Made Easy (MLme) that streamlines the use of ML in research, specifically focusing on classification problems at present. By integrating 4 essential functionalities-namely, Data Exploration, AutoML, CustomML, and Visualization-MLme fulfills the diverse requirements of researchers while eliminating the need for extensive coding efforts. To demonstrate the applicability of MLme, we conducted rigorous testing on 6 distinct datasets, each presenting unique characteristics and challenges. Our results consistently showed promising performance across different datasets, reaffirming the versatility and effectiveness of the tool. Additionally, by utilizing MLme's feature selection functionality, we successfully identified significant markers for CD8+ naive (BACH2), CD16+ (CD16), and CD14+ (VCAN) cell populations.
MLme serves as a valuable resource for leveraging ML to facilitate insightful data analysis and enhance research outcomes, while alleviating concerns related to complex coding scripts. The source code and a detailed tutorial for MLme are available at https://github.com/FunctionalUrology/MLme.
机器学习 (ML) 已成为研究人员分析和从复杂数据集提取有价值信息的重要资源。然而,开发一个有效的和强大的 ML 管道可能会是一个真正的挑战,需要相当多的时间和精力,从而阻碍研究进展。该领域现有的工具需要对 ML 原理和编程技能有深入的了解。此外,用户需要全面配置他们的 ML 管道,以获得最佳性能。
为了解决这些挑战,我们开发了一个名为机器学习助手 (MLme) 的新工具,简化了在研究中使用 ML 的过程,目前特别关注分类问题。通过整合 4 个基本功能——即数据探索、AutoML、CustomML 和可视化——MLme 满足了研究人员的多样化需求,同时消除了对广泛编码工作的需求。为了展示 MLme 的适用性,我们在 6 个不同的数据集上进行了严格的测试,每个数据集都具有独特的特点和挑战。我们的结果在不同的数据集上都表现出了有希望的性能,这证实了该工具的多功能性和有效性。此外,通过利用 MLme 的特征选择功能,我们成功地确定了 CD8+naive (BACH2)、CD16+ (CD16) 和 CD14+ (VCAN) 细胞群的显著标志物。
MLme 是一个有价值的资源,可以利用 ML 进行有见地的数据分析,并提高研究成果,同时减轻与复杂编码脚本相关的担忧。MLme 的源代码和详细教程可在 https://github.com/FunctionalUrology/MLme 上获得。