Suppr超能文献

利用机器学习进行生存分析,以确定 COVID-19 重症监护病房收治的危险因素:来自阿拉伯联合酋长国的回顾性队列研究。

Utilizing machine learning for survival analysis to identify risk factors for COVID-19 intensive care unit admission: A retrospective cohort study from the United Arab Emirates.

机构信息

Biomedical Engineering Department,College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.

Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates.

出版信息

PLoS One. 2024 Jan 11;19(1):e0291373. doi: 10.1371/journal.pone.0291373. eCollection 2024.

Abstract

BACKGROUND

The current situation of the unprecedented COVID-19 pandemic leverages Artificial Intelligence (AI) as an innovative tool for addressing the evolving clinical challenges. An example is utilizing Machine Learning (ML) models-a subfield of AI that take advantage of observational data/Electronic Health Records (EHRs) to support clinical decision-making for COVID-19 cases. This study aimed to evaluate the clinical characteristics and risk factors for COVID-19 patients in the United Arab Emirates utilizing EHRs and ML for survival analysis models.

METHODS

We tested various ML models for survival analysis in this work we trained those models using a different subset of features extracted by several feature selection methods. Finally, the best model was evaluated and interpreted using goodness-of-fit based on calibration curves,Partial Dependence Plots and concordance index.

RESULTS

The risk of severe disease increases with elevated levels of C-reactive protein, ferritin, lactate dehydrogenase, Modified Early Warning Score, respiratory rate and troponin. The risk also increases with hypokalemia, oxygen desaturation and lower estimated glomerular filtration rate and hypocalcemia and lymphopenia.

CONCLUSION

Analyzing clinical data using AI models can provide vital information for clinician to measure the risk of morbidity and mortality of COVID-19 patients. Further validation is crucial to implement the model in real clinical settings.

摘要

背景

当前,空前规模的 COVID-19 大流行形势促使人们将人工智能(AI)作为一种创新工具,以应对不断变化的临床挑战。例如,利用机器学习(ML)模型——人工智能的一个分支,利用观察数据/电子健康记录(EHR)来支持 COVID-19 病例的临床决策。本研究旨在利用 EHR 和 ML 对阿联酋的 COVID-19 患者进行生存分析模型,评估 COVID-19 患者的临床特征和风险因素。

方法

我们在这项工作中测试了各种用于生存分析的 ML 模型,使用了几种特征选择方法提取的不同特征子集来训练这些模型。最后,使用基于校准曲线、偏依赖图和一致性指数的拟合优度评估和解释最佳模型。

结果

C 反应蛋白、铁蛋白、乳酸脱氢酶、改良早期预警评分、呼吸频率和肌钙蛋白水平升高会增加严重疾病的风险。低钾血症、氧饱和度降低、估算肾小球滤过率降低、低钙血症和淋巴细胞减少也会增加风险。

结论

使用 AI 模型分析临床数据可为临床医生提供重要信息,以衡量 COVID-19 患者的发病率和死亡率风险。进一步验证对于在实际临床环境中实施该模型至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ea9/10783720/87fc2edb10d9/pone.0291373.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验