Shang Bo, Zhao Fengyi, Suo Sa, Gao Yuanzuo, Sheehan Colton, Jeon Sungho, Li Jing, Rooney Conor L, Leitner Oliver, Xiao Langqiu, Fan Hanqing, Elimelech Menachem, Wang Leizhi, Meyer Gerald J, Stach Eric A, Mallouk Thomas E, Lian Tianquan, Wang Hailiang
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States.
J Am Chem Soc. 2024 Jan 24;146(3):2267-2274. doi: 10.1021/jacs.3c13540. Epub 2024 Jan 11.
Efficient and stable photoelectrochemical reduction of CO into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO reduction. These structures together create a unique microenvironment for effective reduction of CO to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.
将CO高效稳定地光电化学还原为高还原态液体燃料仍然是一项艰巨的挑战,这需要创新的半导体/催化剂界面来解决。在本研究中,我们引入了一种策略,即制备一种涂覆有超疏水氟化碳层的硅微柱阵列结构,用于将CO光电化学转化为甲醇。这些微柱增加了电极表面积,在不影响光吸收的情况下提高了催化剂负载量和附着力,并有助于将气态中间体限制在催化剂表面附近。超疏水涂层钝化了寄生副反应,并进一步增强了反应中间体的局部积累。在分子催化剂单电子还原后,半导体-催化剂界面从自适应结转变为掩埋结,为CO还原提供了足够的热力学驱动力。这些结构共同为将CO有效还原为甲醇创造了独特的微环境,导致显著的法拉第效率达到20%,同时部分电流密度为3.4 mA cm,比基于平面硅光电极的先前记录高出17倍。这项工作展示了一条通过精心设计界面和微环境来增强光电催化CO还原的新途径,并为太阳能液体燃料生产中的法拉第效率和电流密度设定了基准。