Department of Chemistry, University of California, Berkeley, California 94720, United States.
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2022 May 11;144(18):8002-8006. doi: 10.1021/jacs.2c03702. Epub 2022 Apr 27.
The development of photoelectrochemical systems for converting CO into chemical feedstocks offers an attractive strategy for clean energy storage by directly utilizing solar energy, but selectivity and stability for these systems have thus been limited. Here, we interface silicon nanowire (SiNW) photocathodes with a copper nanoparticle (CuNP) ensemble to drive efficient photoelectrochemical CO conversion to multicarbon products. This integrated system enables CO-to-CH conversion with faradaic efficiency approaching 25% and partial current densities above 2.5 mA/cm at -0.50 V vs RHE, while the nanowire photocathodes deliver 350 mV of photovoltage under 1 sun illumination. Under 50 h of continual bias and illumination, CuNP/SiNW can sustain stable photoelectrochemical CO reduction. These results demonstrate the nanowire/catalyst system as a powerful modular platform to achieve stable photoelectrochemical CO reduction and the feasibility to facilitate complex reactions toward multicarbons using generated photocarriers.
光电化学系统的发展为将 CO 转化为化学原料提供了一种有吸引力的清洁能源存储策略,因为它可以直接利用太阳能,但这些系统的选择性和稳定性因此受到限制。在这里,我们将硅纳米线 (SiNW) 光电阴极与铜纳米颗粒 (CuNP) 集合体相连接,以驱动高效的光电化学 CO 转化为多碳产物。该集成系统可实现 CO 到 CH 的转化,其法拉第效率接近 25%,在相对于 RHE 为-0.50 V 的偏置电压下,部分电流密度超过 2.5 mA/cm,而纳米线光电阴极在 1 个太阳光照下可提供 350 mV 的光电压。在持续 50 小时的偏置和光照下,CuNP/SiNW 可以稳定地进行光电化学 CO 还原。这些结果表明,纳米线/催化剂系统是实现稳定光电化学 CO 还原的强大模块化平台,并展示了利用生成的光载流子促进复杂反应生成多碳产物的可行性。