School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, People's Republic of China.
Dapartment of Orthopedics, 96603 Military Hospital of PLA, Huaihua 418000, People's Republic of China.
Phys Med Biol. 2024 Feb 8;69(4). doi: 10.1088/1361-6560/ad1d6c.
Computed tomography (CT) is widely used in medical research and clinical diagnosis. However, acquiring CT data requires patients to be exposed to considerable ionizing radiance, leading to physical harm. Recent studies have considered using neural radiance field (NERF) techniques to infer the full-view CT projections from single-view x-ray projection, thus aiding physician judgment and reducing Radiance hazards. This paper enhances this technique in two directions: (1) accurate generalization capabilities for control models. (2) Consider different ranges of viewpoints.Building upon generative radiance fields (GRAF), we propose a method called ACnerf to enhance the generalization of the NERF through alignment and pose correction. ACnerf aligns with a reference single x-ray by utilizing a combination of positional encoding with Gaussian random noise (latent code) obtained from GRAF training. This approach avoids compromising the 3D structure caused by altering the generator. During inference, a pose judgment network is employed to correct the pose and optimize the rendered viewpoint. Additionally, when generating a narrow range of views, ACnerf employs frequency-domain regularization to fine-tune the generator and achieve precise projections.The proposed ACnerf method surpasses the state-of-the-art NERF technique in terms of rendering quality for knee and chest data with varying contrasts. It achieved an average improvement of 2.496 dB in PSNR and 41% in LPIPS for 0°-360° projections. Additionally, for -15° to 15° projections, ACnerf achieved an average improvement of 0.691 dB in PSNR and 25.8% in LPIPS.With adjustments in alignment, inference, and rendering range, our experiments and evaluations on knee and chest data of different contrasts show that ACnerf effectively reduces artifacts and aberrations in the new view. ACnerf's ability to recover more accurate 3D structures from single x-rays has excellent potential for reducing damage from ionising radiation in clinical diagnostics.
计算机断层扫描(CT)在医学研究和临床诊断中得到了广泛应用。然而,获取 CT 数据需要患者暴露在相当大的电离辐射下,从而导致身体伤害。最近的研究已经考虑使用神经辐射场(NERF)技术从单视图 X 射线投影推断全视角 CT 投影,从而辅助医生判断并降低辐射危害。本文从两个方向增强了该技术:(1)控制模型的准确泛化能力。(2)考虑不同的视角范围。在生成辐射场(GRAF)的基础上,我们提出了一种名为 ACnerf 的方法,通过对齐和姿势校正来增强 NERF 的泛化能力。ACnerf 通过利用位置编码与从 GRAF 训练中获得的高斯随机噪声(潜在代码)的组合,与参考单 X 射线对齐。这种方法避免了改变生成器而导致 3D 结构受损。在推断过程中,使用姿势判断网络来校正姿势并优化渲染的视点。此外,在生成狭窄视角范围时,ACnerf 使用频域正则化来微调生成器并实现精确的投影。与最先进的 NERF 技术相比,所提出的 ACnerf 方法在具有不同对比度的膝盖和胸部数据的渲染质量方面表现更优。它在 0°-360°投影中实现了平均 2.496 dB 的 PSNR 提升和 41%的 LPIPS 提升。此外,对于-15°到 15°的投影,ACnerf 在 PSNR 方面实现了平均 0.691 dB 的提升和 25.8%的 LPIPS 提升。通过对齐、推断和渲染范围的调整,我们对不同对比度的膝盖和胸部数据的实验和评估表明,ACnerf 可以有效地减少新视图中的伪影和像差。ACnerf 从单 X 射线中恢复更准确 3D 结构的能力在降低临床诊断中电离辐射危害方面具有巨大潜力。