Lee Jooho, Kim Seongjun, Ahn Junhyun, Wang Adam S, Baek Jongduk
Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea.
School of Integrated Technology, Yonsei University, Seoul, Republic of Korea.
Med Phys. 2025 Jul;52(7):e17859. doi: 10.1002/mp.17859. Epub 2025 Apr 30.
The presence of metal objects in computed tomography (CT) imaging introduces severe artifacts that degrade image quality and hinder accurate diagnosis. While several deep learning-based metal artifact reduction (MAR) methods have been proposed, they often exhibit poor performance on unseen data and require large datasets to train neural networks.
In this work, we propose a sinogram inpainting method for metal artifact reduction that leverages a neural attenuation field (NAF) as a prior. This new method, dubbed NAFMAR, operates in a self-supervised manner by optimizing a model-based neural field, thus eliminating the need for large training datasets.
NAF is optimized to generate prior images, which are then used to inpaint metal traces in the original sinogram. To address the corruption of x-ray projections caused by metal objects, a 3D forward projection of the original corrupted image is performed to identify metal traces. Consequently, NAF is optimized using a metal trace-masked ray sampling strategy that selectively utilizes uncorrupted rays to supervise the network. Moreover, a metal-aware loss function is proposed to prioritize metal-associated regions during optimization, thereby enhancing the network to learn more informed representations of anatomical features. After optimization, the NAF images are rendered to generate NAF prior images, which serve as priors to correct original projections through interpolation. Experiments are conducted to compare NAFMAR with other prior-based inpainting MAR methods.
The proposed method provides an accurate prior without requiring extensive datasets. Images corrected using NAFMAR showed sharp features and preserved anatomical structures. Our comprehensive evaluation, involving simulated dental CT and clinical pelvic CT images, demonstrated the effectiveness of NAF prior compared to other prior information, including the linear interpolation and data-driven convolutional neural networks (CNNs). NAFMAR outperformed all compared baselines in terms of structural similarity index measure (SSIM) values, and its peak signal-to-noise ratio (PSNR) value was comparable to that of the dual-domain CNN method.
NAFMAR presents an effective, high-fidelity solution for metal artifact reduction in 3D tomographic imaging without the need for large datasets.
计算机断层扫描(CT)成像中金属物体的存在会引入严重伪影,降低图像质量并阻碍准确诊断。虽然已经提出了几种基于深度学习的金属伪影减少(MAR)方法,但它们在未见数据上的性能往往较差,并且需要大型数据集来训练神经网络。
在这项工作中,我们提出了一种用于减少金属伪影的正弦图修复方法,该方法利用神经衰减场(NAF)作为先验。这种新方法称为NAFMAR,通过优化基于模型的神经场以自监督方式运行,从而无需大型训练数据集。
对NAF进行优化以生成先验图像,然后用于修复原始正弦图中的金属痕迹。为了解决由金属物体引起的X射线投影损坏问题,对原始损坏图像进行三维正向投影以识别金属痕迹。因此,使用金属痕迹掩码射线采样策略对NAF进行优化,该策略选择性地利用未损坏的射线来监督网络。此外,提出了一种金属感知损失函数,以便在优化过程中对与金属相关的区域进行优先处理,从而增强网络学习更多关于解剖特征的信息表示。优化后,渲染NAF图像以生成NAF先验图像,这些先验图像用作通过插值校正原始投影的先验。进行实验以将NAFMAR与其他基于先验的修复MAR方法进行比较。
所提出的方法无需大量数据集即可提供准确的先验。使用NAFMAR校正的图像显示出清晰的特征并保留了解剖结构。我们的综合评估涉及模拟牙科CT和临床盆腔CT图像,结果表明与其他先验信息(包括线性插值和数据驱动的卷积神经网络(CNN))相比,NAF先验是有效的。在结构相似性指数测量(SSIM)值方面,NAFMAR优于所有比较的基线,并且其峰值信噪比(PSNR)值与双域CNN方法相当。
NAFMAR为三维断层成像中的金属伪影减少提供了一种有效、高保真的解决方案,无需大型数据集。