Suppr超能文献

大学生诵读困难筛查:基于条件推理树的标准化程序。

Screening for Dyslexia in University Students: a Standardized Procedure Based on Conditional Inference Trees.

机构信息

Psychology and Cognitive Sciences, Laboratoire d'Etude des Mécanismes Cognitifs, Université Lumière Lyon 2, Lyon, France.

Cognitive Psychology, Laboratoire de Psychologie Cognitive, Aix-Marseille Université & CNRS, Marseille, France.

出版信息

Arch Clin Neuropsychol. 2024 Jul 24;39(5):557-574. doi: 10.1093/arclin/acad103.

Abstract

OBJECTIVE

The focus of this study is on providing tools to enable researchers and practitioners to screen for dyslexia in adults entering university. The first aim is to validate and provide diagnostic properties for a set of seven tests including a 1-min word reading test, a 2-min pseudoword reading test, a phonemic awareness test, a spelling test, the Alouette reading fluency test, a connected-text reading fluency test, and the self-report Adult Reading History Questionnaire (ARHQ). The second, more general, aim of this study was to devise a standardized and confirmatory procedure for dyslexia screening from a subset of the initial seven tests. We used conditional inference tree analysis, a supervised machine learning approach to identify the most relevant tests, cut-off scores, and optimal order of test administration.

METHOD

A combined sample of 60 university students with dyslexia (clinical validation group) and 65 university students without dyslexia (normative group) provided data to determine the diagnostic properties of these tests including sensitivity, specificity, and cut-off scores.

RESULTS

Results showed that combinations of four tests (ARHQ, text reading fluency, phonemic awareness, pseudoword reading) and their relative conditional cut-off scores optimize powerful discriminatory screening procedures for dyslexia, with an overall classification accuracy of approximately 90%.

CONCLUSIONS

The novel use of the conditional inference tree methodology explored in the present study offered a way of moving toward a more efficient screening battery using only a subset of the seven tests examined. Both clinical and theoretical implications of these findings are discussed.

摘要

目的

本研究的重点是提供工具,使研究人员和从业者能够筛查进入大学的成年人的阅读障碍。第一个目标是验证和提供一套包括七项测试的诊断特性,包括一分钟单词阅读测试、两分钟伪词阅读测试、语音意识测试、拼写测试、Alouette 阅读流畅性测试、连贯文本阅读流畅性测试和自我报告的成人阅读史问卷 (ARHQ)。本研究的第二个更普遍的目标是从最初的七项测试中设计一个标准化和确认性的阅读障碍筛查程序。我们使用条件推理树分析,一种监督机器学习方法来识别最相关的测试、临界分数和最佳测试顺序。

方法

一组 60 名患有阅读障碍的大学生(临床验证组)和 65 名没有阅读障碍的大学生(规范组)提供数据,以确定这些测试的诊断特性,包括敏感性、特异性和临界分数。

结果

结果表明,四项测试(ARHQ、文本阅读流畅性、语音意识、伪词阅读)的组合及其相对条件临界分数优化了强大的阅读障碍鉴别筛选程序,整体分类准确率约为 90%。

结论

本研究中探索的条件推理树方法的新颖应用提供了一种使用仅七项测试中的一部分子集的更有效的筛选电池的方法。讨论了这些发现的临床和理论意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验