Suppr超能文献

通过计算片段融合进行激酶抑制剂化学空间的高效从头至先导化合物搜索。

Efficient Hit-to-Lead Searching of Kinase Inhibitor Chemical Space via Computational Fragment Merging.

机构信息

Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, United States.

Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.

出版信息

J Chem Inf Model. 2021 Dec 27;61(12):5967-5987. doi: 10.1021/acs.jcim.1c00630. Epub 2021 Nov 11.

Abstract

In early-stage drug discovery, the hit-to-lead optimization (or "hit expansion") stage entails starting from a newly identified active compound and improving its potency or other properties. Traditionally, this process relies on synthesizing and evaluating a series of analogues to build up structure-activity relationships. Here, we describe a computational strategy focused on kinase inhibitors, intended to expedite the process of identifying analogues with improved potency. Our protocol begins from an inhibitor of the target kinase and generalizes the synthetic route used to access it. By searching for commercially available replacements for the individual building blocks used to make the parent inhibitor, we compile an enumerated library of compounds that can be accessed using the same chemical transformations; these huge libraries can exceed many millions─or billions─of compounds. Because the resulting libraries are much too large for explicit virtual screening, we instead consider alternate approaches to identify the top-scoring compounds. We find that contributions from individual substituents are well described by a pairwise additivity approximation, provided that the corresponding fragments position their shared core in precisely the same way relative to the binding site. This key insight allows us to determine which fragments are suitable for merging into single new compounds and which are not. Further, the use of pairwise approximation allows interaction energies to be assigned to each compound in the library without the need for any further structure-based modeling: interaction energies instead can be reliably estimated from the energies of the component fragments, and the reduced computational requirements allow for flexible energy minimizations that allow the kinase to respond to each substitution. We demonstrate this protocol using libraries built from six representative kinase inhibitors drawn from the literature, which target five different kinases: CDK9, CHK1, CDK2, EGFR, and ACK1. In each example, the enumerated library includes additional analogues reported by the original study to have activity, and these analogues are successfully prioritized within the library. We envision that the insights from this work can facilitate the rapid assembly and screening of increasingly large libraries for focused hit-to-lead optimization. To enable adoption of these methods and to encourage further analyses, we disseminate the computational tools needed to deploy this protocol.

摘要

在药物发现的早期阶段,从新发现的活性化合物开始,提高其效力或其他性质,这就是所谓的“命中到先导优化(或“命中扩展”)”阶段。传统上,这个过程依赖于合成和评估一系列类似物来建立结构-活性关系。在这里,我们描述了一种针对激酶抑制剂的计算策略,旨在加速识别具有更高效力的类似物的过程。我们的方案从目标激酶的抑制剂开始,并推广用于获得它的合成途径。通过搜索用于制造母体抑制剂的各个构建块的商业上可获得的替代品,我们编译了一个可以使用相同化学转化访问的枚举化合物库;这些巨大的库可以超过数百万-或数十亿-个化合物。由于得到的库太大而无法进行明确的虚拟筛选,因此我们转而考虑替代方法来识别得分最高的化合物。我们发现,只要相应的片段相对于结合位点以完全相同的方式定位其共享核心,那么单个取代基的贡献就可以很好地用成对加性近似来描述。这一关键见解使我们能够确定哪些片段适合合并成单个新化合物,哪些不适合。此外,成对近似的使用允许为库中的每个化合物分配相互作用能,而无需进行任何进一步的基于结构的建模:相互作用能可以可靠地从组成片段的能量中估计出来,并且减少的计算要求允许灵活的能量最小化,从而使激酶能够响应每个取代基。我们使用从文献中提取的六个代表性激酶抑制剂构建的文库来演示该方案,这些抑制剂针对五个不同的激酶:CDK9、CHK1、CDK2、EGFR 和 ACK1。在每个示例中,枚举库都包括原始研究报告具有活性的额外类似物,并且这些类似物在库中成功地被优先考虑。我们设想,这项工作的见解可以促进越来越大的文库的快速组装和筛选,以实现重点命中到先导优化。为了使这些方法得到采用并鼓励进一步分析,我们分发了部署此方案所需的计算工具。

相似文献

5
Fragment based discovery of a novel and selective PI3 kinase inhibitor.基于片段的新型选择性 PI3 激酶抑制剂的发现。
Bioorg Med Chem Lett. 2011 Nov 1;21(21):6586-90. doi: 10.1016/j.bmcl.2011.07.117. Epub 2011 Aug 6.

本文引用的文献

1
Efficient Exploration of Chemical Space with Docking and Deep Learning.运用对接和深度学习高效探索化学空间。
J Chem Theory Comput. 2021 Nov 9;17(11):7106-7119. doi: 10.1021/acs.jctc.1c00810. Epub 2021 Sep 30.
3
Ligand Strain Energy in Large Library Docking.配体应变能在大型文库对接中的应用。
J Chem Inf Model. 2021 Sep 27;61(9):4331-4341. doi: 10.1021/acs.jcim.1c00368. Epub 2021 Sep 1.
8
FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.FRAGSITE:基于片段的虚拟配体筛选方法。
J Chem Inf Model. 2021 Apr 26;61(4):2074-2089. doi: 10.1021/acs.jcim.0c01160. Epub 2021 Mar 16.
10
Property-Unmatched Decoys in Docking Benchmarks.对接基准测试中的属性不匹配诱饵。
J Chem Inf Model. 2021 Feb 22;61(2):699-714. doi: 10.1021/acs.jcim.0c00598. Epub 2021 Jan 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验