College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, 730020 Lanzhou, China; Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Shangqiu Station of National Field Agro-ecosystem Experimental Network/National Agricultural Experimental Station for Agricultural Environment/National Long-term Experimental Station for Agricultural Green Development, Shangqiu 476000, Henan, China.
College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, 730020 Lanzhou, China.
Sci Total Environ. 2024 Mar 10;915:169949. doi: 10.1016/j.scitotenv.2024.169949. Epub 2024 Jan 12.
Spatial arrangement is a key factor in maintaining community yield and stability via regulating component intra-/interspecific competition in an alpine climate environment. A 2-yr field trial was conducted on the Qinghai Tibetan Plateau, including cross row (S_C), double row (S_D), single row (S_R), broadcast (M_B), dependent row (M_D) and independent row (M_I). Our results showed that S_C could avoid intraspecific competition by reasonable spatial arrangement, which favored the dominant component growth (1st year: leaf; 2nd year: stem and reproductive organ). For mixed communities, RII (relative interaction intensity) implied that interspecific competition also embodied on dominant component, and higher Elymus nutans component advantages seriously limited Onobrychis viciifolia's components growth in the 2nd year. More details displayed that E. nutans in M_B or M_D produced the maximum system yield via increasing leaf investment at the initial stages and stem investment after July 2019. Besides, M_I possessed lower component numbers than M_B and M_D in the unit area. PCA analysis revealed that component numbers or biomasses changed synchronously, besides the E. nutans of S_C, M_B, and M_D presented significant discrepancies compared to other treatments in September 2019, which verified the effect of sowing patterns on component growth (P < 0.05), but O. viciifolia in different sowing patterns was similar in the 2nd year. Considering the adaptability and production for the environment of the Qinghai Tibetan Plateau, S_C is recommended for the promoted effect on component biomasses. M_B and M_D, with the merit of spacing utilization as well as higher resistance to variation in seasonal growth conditions via optimizing interspecific relationships for mixed communities, are adapted for increasing yield via component harvesting. Our results unveiled the potential of optimizing spatial usage efficiency via controlling component growth characteristics and stressed the importance of dynamic change of dominant components to enhance forage system production in alpine regions.
空间排列是通过调节高寒气候环境中组成成分的种内/种间竞争来维持群落产量和稳定性的关键因素。在青藏高原上进行了为期 2 年的田间试验,包括交叉行(S_C)、双行(S_D)、单行(S_R)、撒播(M_B)、依存行(M_D)和独立行(M_I)。我们的结果表明,S_C 可以通过合理的空间排列来避免种内竞争,有利于优势成分的生长(第 1 年:叶片;第 2 年:茎和生殖器官)。对于混合群落,RII(相对相互作用强度)表明种间竞争也体现在优势成分上,并且 E. nutans 成分优势较高严重限制了 O. viciifolia 在第 2 年的成分生长。更详细的信息显示,E. nutans 在 M_B 或 M_D 中通过在初始阶段增加叶片投资和 2019 年 7 月后增加茎投资来产生最大的系统产量。此外,M_I 在单位面积上的成分数量比 M_B 和 M_D 少。PCA 分析表明,成分数量或生物量同步变化,除了 S_C、M_B 和 M_D 的 E. nutans 外,2019 年 9 月其他处理与其他处理之间存在显著差异,这验证了播种模式对成分生长的影响(P<0.05),但不同播种模式下的 O. viciifolia 在第 2 年相似。考虑到青藏高原的环境适应性和生产力,建议采用 S_C 来提高成分生物量的促进作用。M_B 和 M_D 通过优化种间关系来利用空间并提高对季节性生长条件变化的抗性,从而增加产量,适合通过成分收获来提高产量。我们的研究结果揭示了通过控制成分生长特性优化空间利用效率的潜力,并强调了主导成分动态变化对提高高寒地区饲料系统产量的重要性。