Jain Shefali, Sekhar Ashok
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
Proteins. 2025 Jan;93(1):302-319. doi: 10.1002/prot.26667. Epub 2024 Jan 14.
The spindle checkpoint complex is a key surveillance mechanism in cell division that prevents premature separation of sister chromatids. Mad2 is an integral component of this spindle checkpoint complex that recognizes cognate substrates such as Mad1 and Cdc20 in its closed (C-Mad2) conformation by fastening a "seatbelt" around short peptide regions that bind to the substrate recognition site. Mad2 is also a metamorphic protein that adopts not only the fold found in C-Mad2, but also a structurally distinct open conformation (O-Mad2) which is incapable of binding substrates. Here, we show using chemical exchange saturation transfer (CEST) and relaxation dispersion (CPMG) NMR experiments that Mad2 transiently populates three other higher free energy states with millisecond lifetimes, two in equilibrium with C-Mad2 (E1 and E2) and one with O-Mad2 (E3). E1 is a mimic of substrate-bound C-Mad2 in which the N-terminus of one C-Mad2 molecule inserts into the seatbelt region of a second molecule of C-Mad2, providing a potential pathway for autoinhibition of C-Mad2. E2 is the "unbuckled" conformation of C-Mad2 that facilitates the triage of molecules along competing fold-switching and substrate binding pathways. The E3 conformation that coexists with O-Mad2 shows fluctuations at a hydrophobic lock that is required for stabilizing the O-Mad2 fold and we hypothesize that E3 represents an early intermediate on-pathway towards conversion to C-Mad2. Collectively, the NMR data highlight the rugged free energy landscape of Mad2 with multiple low-lying intermediates that interlink substrate-binding and fold-switching, and also emphasize the role of molecular dynamics in its function.
纺锤体检查点复合物是细胞分裂中的一种关键监测机制,可防止姐妹染色单体过早分离。Mad2是这种纺锤体检查点复合物的一个组成部分,它在其封闭(C-Mad2)构象中通过在与底物识别位点结合的短肽区域周围系上“安全带”来识别同源底物,如Mad1和Cdc20。Mad2也是一种变构蛋白,它不仅采用C-Mad2中发现的折叠结构,还采用一种结构上不同的开放构象(O-Mad2),这种构象无法结合底物。在这里,我们使用化学交换饱和转移(CEST)和弛豫分散(CPMG)核磁共振实验表明,Mad2短暂地占据了另外三种具有毫秒寿命的更高自由能状态,其中两种与C-Mad2处于平衡状态(E1和E2),一种与O-Mad2处于平衡状态(E3)。E1是底物结合的C-Mad2的模拟物,其中一个C-Mad2分子的N端插入第二个C-Mad2分子的安全带区域,为C-Mad2的自抑制提供了一条潜在途径。E2是C-Mad2的“解开”构象,它有助于分子沿着相互竞争的折叠转换和底物结合途径进行分类。与O-Mad2共存的E3构象在稳定O-Mad2折叠所需的疏水锁处显示出波动,我们假设E3代表了向C-Mad2转化的早期中间途径。总的来说,核磁共振数据突出了Mad2崎岖的自由能景观,其中有多个低位中间体将底物结合和折叠转换联系起来,也强调了分子动力学在其功能中的作用。