Suppr超能文献

蛋白质折叠、功能和组装的能量景观中的模糊性和挫折感。

Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly.

机构信息

Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.

Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET-IQUIBICEN, 1428 Buenos Aires, Argentina.

出版信息

Acc Chem Res. 2021 Mar 2;54(5):1251-1259. doi: 10.1021/acs.accounts.0c00813. Epub 2021 Feb 8.

Abstract

Are all protein interactions fully optimized? Do suboptimal interactions compromise specificity? What is the functional impact of frustration? Why does evolution not optimize some contacts? Proteins and their complexes are best described as ensembles of states populating an energy landscape. These ensembles vary in breadth from narrow ensembles clustered around a single average X-ray structure to broader ensembles encompassing a few different functional "taxonomic" states on to near continua of rapidly interconverting conformations, which are called "fuzzy" or even "intrinsically disordered". Here we aim to provide a comprehensive framework for confronting the structural and dynamical continuum of protein assemblies by combining the concepts of energetic frustration and interaction fuzziness. The diversity of the protein structural ensemble arises from the frustrated conflicts between the interactions that create the energy landscape. When frustration is minimal after folding, it results in a narrow ensemble, but residual frustrated interactions result in fuzzy ensembles, and this fuzziness allows a versatile repertoire of biological interactions. Here we discuss how fuzziness and frustration play off each other as proteins fold and assemble, viewing their significance from energetic, functional, and evolutionary perspectives.We demonstrate, in particular, that the common physical origin of both concepts is related to the ruggedness of the energy landscapes, intramolecular in the case of frustration and intermolecular in the case of fuzziness. Within this framework, we show that alternative sets of suboptimal contacts may encode specificity without achieving a single structural optimum. Thus, we demonstrate that structured complexes may not be optimized, and energetic frustration is realized via different sets of contacts leading to multiplicity of specific complexes. Furthermore, we propose that these suboptimal, frustrated, or fuzzy interactions are under evolutionary selection and expand the biological repertoire by providing a multiplicity of biological activities. In accord, we show that non-native interactions in folding or interaction landscapes can cooperate to generate diverse functional states, which are essential to facilitate adaptation to different cellular conditions. Thus, we propose that not fully optimized structures may actually be beneficial for biological activities of proteins via an alternative set of suboptimal interactions. The importance of such variability has not been recognized across different areas of biology.This account provides a modern view on folding, function, and assembly across the protein universe. The physical framework presented here is applicable to the structure and dynamics continuum of proteins and opens up new perspectives for drug design involving not fully structured, highly dynamic protein assemblies.

摘要

所有蛋白质相互作用是否完全优化?次优相互作用是否会影响特异性?挫折的功能影响是什么?为什么进化没有优化一些接触?蛋白质及其复合物最好被描述为在能量景观中占据状态的集合。这些集合的宽度从围绕单个平均 X 射线结构的狭窄集合到包含几种不同功能“分类”状态的较宽集合,再到快速相互转换构象的连续体,这些构象被称为“模糊”甚至“固有无序”。在这里,我们旨在通过结合能量挫折和相互作用模糊性的概念,为应对蛋白质组装的结构和动力学连续体提供一个全面的框架。蛋白质结构集合的多样性源于形成能量景观的相互作用之间的受挫冲突。当折叠后挫折最小化时,它会导致一个狭窄的集合,但残留的受挫相互作用会导致模糊的集合,这种模糊性允许生物相互作用的多功能 repertoire。在这里,我们讨论了模糊性和挫折感如何相互作用,因为蛋白质折叠和组装,从能量、功能和进化的角度来看待它们的意义。我们特别证明,这两个概念的共同物理起源与能量景观的崎岖程度有关,在挫折的情况下是分子内的,在模糊的情况下是分子间的。在这个框架内,我们表明,替代的次优接触集可能在不达到单个结构最优的情况下编码特异性。因此,我们证明结构复杂的复合物可能没有被优化,并且能量挫折是通过不同的接触集来实现的,从而导致多个特定的复合物。此外,我们提出这些次优、受挫或模糊的相互作用是在进化选择下进行的,并通过提供多种生物活性来扩展生物 repertoire。相应地,我们表明,在折叠或相互作用景观中的非天然相互作用可以合作产生多种功能状态,这对于促进适应不同的细胞条件是必不可少的。因此,我们提出,通过替代的次优相互作用,不完全优化的结构实际上可能对蛋白质的生物活性有益。这种可变性的重要性在不同的生物学领域尚未得到认识。

该描述为蛋白质宇宙中的折叠、功能和组装提供了现代观点。这里提出的物理框架适用于蛋白质的结构和动力学连续体,并为涉及不完全结构化、高度动态蛋白质组装的药物设计开辟了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e10a/8023570/af1721c2cc76/ar0c00813_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验