Hara Mayuko, Özkan Engin, Sun Hongbin, Yu Hongtao, Luo Xuelian
Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390;
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11252-7. doi: 10.1073/pnas.1512197112. Epub 2015 Aug 24.
The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1-Mad2 core complex. In mitosis, kinetochore-bound Mad1-C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. Here, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2. Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2-binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2-C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.
纺锤体检查点在有丝分裂前中期感知未附着的动粒,并抑制后期促进复合物或细胞周期体(APC/C),从而确保染色体准确分离。检查点蛋白有丝分裂阻滞缺陷蛋白2(Mad2)是一种具有多种折叠状态的特殊蛋白质。在Mad1-Mad2核心复合物中,Mad2采取封闭构象(C-Mad2)。在有丝分裂过程中,与动粒结合的Mad1-C-Mad2从细胞质中募集潜在的开放型Mad2(O-Mad2),并将其转化为中间构象体(I-Mad2),然后I-Mad2可以像C-Mad2一样结合并抑制APC/C激活因子细胞分裂周期蛋白20(Cdc20)。在此,我们报告了与C-Mad2结合的I-Mad2的晶体结构和核磁共振分析结果。尽管I-Mad2在晶体和溶液中保留了O-Mad2的折叠结构,但其核心结构元件经历了明显的刚体运动,并且更类似于C-Mad2。在I-Mad2中表现出甲基化学位移变化的残基形成了一个连续的内部网络,该网络将其C-Mad2结合位点与构象可塑性的C末端区域相连。I-Mad2-C-Mad2界面处残基的突变阻碍了I-Mad2的形成,并阻碍了Mad2的结构转变。我们的研究深入了解了Mad2的构象激活,并建立了Mad2中两个远端位点之间变构通讯的基础。