Suppr超能文献

M3DISEEN:一种用于预测药物 3D 可打印性的新型机器学习方法。

M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines.

机构信息

Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.

出版信息

Int J Pharm. 2020 Nov 30;590:119837. doi: 10.1016/j.ijpharm.2020.119837. Epub 2020 Sep 20.

Abstract

Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).

摘要

人工智能(AI)通过分析和持续监测大数据集,有潜力重塑药物制剂的开发。熔融沉积建模(FDM)三维打印(3DP)在口服药物输送领域取得了重大进展,针对患者的需求设计、开发和配制了个性化载药制剂。FDM 3DP 工艺始于通过热熔挤出(HME)生产载药长丝,然后使用 FDM 3D 打印机打印药物产品。然而,制造参数的优化是一种耗时的、经验性的试验方法,需要专业知识。在这里,M3DISEEN 是一个基于网络的制药软件,它使用人工智能机器学习技术(MLT)来加速 FDM 3D 打印。总共设计了 614 种载药配方,这些配方是从 145 种不同的药物赋形剂的综合清单中选择的,在内部进行了 3D 打印和评估。为了构建预测工具,构建了一个数据集,并以 75:25 的比例对模型进行了训练和测试。显著的是,AI 模型分别以 76%和 67%的准确度预测了打印性能和长丝特性的关键制造参数。此外,AI 模型预测 HME 和 FDM 加工温度的平均绝对误差分别为 8.9°C 和 8.3°C。引人注目的是,AI 模型仅通过输入药物赋形剂的商品名就能达到高精度。因此,人工智能提供了一种有效的整体建模技术和软件,以简化和推进 3DP 作为药物开发中的一项重要技术。M3DISEEN 可在(http://m3diseen.com/predictions/)获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验