Suppr超能文献

整合临床和空气质量数据以改善 COPD 加重预测。

Integrating Clinical and Air Quality Data to Improve Prediction of COPD Exacerbations.

机构信息

Vanderbilt University, Nashville, TN.

Vanderbilt University Medical Center, Nashville, TN.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:1209-1217. eCollection 2023.

Abstract

Several studies have found associations between air pollution and respiratory disease outcomes. However, there is minimal prognostic research exploring whether integrating air quality into clinical prediction models can improve accuracy and utility. In this study, we built models using both logistic regression and random forests to determine the benefits of including air quality data with meteorological and clinical data in prediction of COPD exacerbations requiring medical care. Logistic models were not improved by inclusion of air quality. However, the net benefit curves of random forest models showed greater clinical utility with the addition of air quality data. These models demonstrate a practical and relatively low-cost way to include environmental information into clinical prediction tools to improve the clinical utility of COPD prediction. Findings could be used to provide population level health warnings as well as individual-patient risk assessments.

摘要

几项研究发现了空气污染与呼吸疾病结果之间的关联。然而,几乎没有预后研究探索将空气质量纳入临床预测模型是否可以提高准确性和实用性。在这项研究中,我们使用逻辑回归和随机森林构建模型,以确定将空气质量数据与气象和临床数据结合起来预测需要医疗护理的 COPD 加重的益处。逻辑模型的纳入并没有提高准确性。然而,随机森林模型的净效益曲线显示,加入空气质量数据后具有更大的临床实用性。这些模型展示了一种实用且相对低成本的方法,可以将环境信息纳入临床预测工具中,从而提高 COPD 预测的临床实用性。研究结果可用于提供人群健康警报以及个体患者的风险评估。

相似文献

1
Integrating Clinical and Air Quality Data to Improve Prediction of COPD Exacerbations.
AMIA Annu Symp Proc. 2024 Jan 11;2023:1209-1217. eCollection 2023.
4
Effect of ambient air quality on exacerbation of COPD in patients and its potential mechanism.
Int J Chron Obstruct Pulmon Dis. 2019 Jul 10;14:1517-1526. doi: 10.2147/COPD.S190600. eCollection 2019.
6
Progression from Asthma to Chronic Obstructive Pulmonary Disease. Is Air Pollution a Risk Factor?
Am J Respir Crit Care Med. 2016 Aug 15;194(4):429-38. doi: 10.1164/rccm.201510-1932OC.
7
Understanding the relationships between environmental factors and exacerbations of COPD.
Expert Rev Respir Med. 2021 Jan;15(1):39-50. doi: 10.1080/17476348.2020.1801426. Epub 2020 Aug 6.
8
Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis.
Int J Chron Obstruct Pulmon Dis. 2016 Dec 12;11:3079-3091. doi: 10.2147/COPD.S122282. eCollection 2016.

本文引用的文献

1
Lung Health for All: Chronic Obstructive Lung Disease and World Lung Day 2022.
Am J Respir Crit Care Med. 2022 Sep 15;206(6):669-671. doi: 10.1164/rccm.202207-1407ED.
2
Historical Redlining Is Associated with Present-Day Air Pollution Disparities in U.S. Cities.
Environ Sci Technol Lett. 2022 Apr 12;9(4):345-350. doi: 10.1021/acs.estlett.1c01012. Epub 2022 Mar 9.
3
Disparities in Air Pollution Exposure in the United States by Race/Ethnicity and Income, 1990-2010.
Environ Health Perspect. 2021 Dec;129(12):127005. doi: 10.1289/EHP8584. Epub 2021 Dec 15.
4
Air pollution and chronic obstructive pulmonary disease.
Chronic Dis Transl Med. 2020 Jul 11;6(4):260-269. doi: 10.1016/j.cdtm.2020.05.004. eCollection 2020 Dec.
5
Remote Patient Monitoring for the Detection of COPD Exacerbations.
Int J Chron Obstruct Pulmon Dis. 2020 Aug 24;15:2005-2013. doi: 10.2147/COPD.S256907. eCollection 2020.
7
The Acute COPD Exacerbation Prediction Tool (ACCEPT): a modelling study.
Lancet Respir Med. 2020 Oct;8(10):1013-1021. doi: 10.1016/S2213-2600(19)30397-2. Epub 2020 Mar 13.
9
Claims-based risk model for first severe COPD exacerbation.
Am J Manag Care. 2018 Feb 1;24(2):e45-e53.
10
A systematic review of data mining and machine learning for air pollution epidemiology.
BMC Public Health. 2017 Nov 28;17(1):907. doi: 10.1186/s12889-017-4914-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验