Department of Biomedical Informatics, Columbia University, New York, New York, USA.
Department of Medicine, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, USA.
AMIA Annu Symp Proc. 2024 Jan 11;2023:1246-1256. eCollection 2023.
Computerized provider order entry (CPOE) systems have been cited as a significant contributor to clinician burden. Vendor-derived measures and data sets have been developed to help with optimization of CPOE systems. We describe how we analyzed vendor-derived Order Friction (OF) EHR log data at our health system and propose a practical approach for optimizing CPOE systems by reducing OF. We also conducted a pre-post intervention study using OF data to evaluate the impact of defaulting the frequency of urine, stool and nasal swab tests and found that all modified orders had significantly fewer changes required per order (p<0.01). Our proposed approach is a six-step process: 1) understand the ordering process, 2) understand OF data elements contextually, 3) explore ordering user-level factors, 4) evaluate order volume and friction from different order sources, 5) optimize order-level design, 6) identify high volume alerts to evaluate for appropriateness.
计算机化医嘱录入(CPOE)系统被认为是导致临床医生负担增加的一个重要因素。供应商开发的措施和数据集已被用于帮助优化 CPOE 系统。我们描述了如何在我们的医疗系统中分析供应商提供的医嘱摩擦(OF)电子病历日志数据,并提出了一种通过减少 OF 来优化 CPOE 系统的实用方法。我们还使用 OF 数据进行了一项干预前后研究,以评估默认尿液、粪便和鼻腔拭子检测频率对医嘱的影响,发现所有修改后的医嘱每单所需的更改数量明显减少(p<0.01)。我们提出的方法是一个六步流程:1)了解医嘱流程,2)从上下文角度理解 OF 数据元素,3)探索医嘱用户层面的因素,4)从不同医嘱来源评估医嘱量和摩擦力,5)优化医嘱级别的设计,6)确定高音量警报以评估其适宜性。