Zhang Yiye, Padman Rema, Levin James E
The H. John Heinz III College, Carnegie Mellon University, Pittsburgh, PA, USA.
Stud Health Technol Inform. 2013;192:734-8.
Higher cognitive workload due to poor usability is a significant, unanticipated consequence of healthcare information technology (IT), resulting in new types of medical errors. An important example of this can be observed in the use of order sets, which allow safe and efficient provider order entry guided by known best practices. This paper aims to improve IT-enabled order entry by re-designing order sets using data-driven approaches to develop new order sets that match current usage and workflow, while incurring minimum cognitive workload. Applying optimization models embedded with clustering techniques, our methods identify items for constituting order sets that are relevant based on historical ordering data wherein items for a single patient are often placed together or in close temporal proximity during hospital stay. Results indicate that the new approaches dominate current solutions, significantly reducing cognitive workload, and improving order set content. Data driven methods thus offer a promising approach for designing order sets that are generalizable, evidence-based and up-to-date with current best practices.
由于可用性差导致的更高认知工作量是医疗信息技术(IT)一个重大的、未预料到的后果,会导致新型医疗差错。在医嘱集的使用中可以观察到一个重要例子,医嘱集能在已知最佳实践的指导下实现安全、高效的医疗服务提供者医嘱录入。本文旨在通过使用数据驱动方法重新设计医嘱集来改进基于IT的医嘱录入,以开发与当前使用情况和工作流程相匹配的新医嘱集,同时将认知工作量降至最低。应用嵌入聚类技术的优化模型,我们的方法根据历史医嘱数据确定构成相关医嘱集的项目,其中单个患者的项目在住院期间通常放在一起或在时间上紧邻。结果表明,新方法优于当前解决方案,显著降低了认知工作量,并改善了医嘱集内容。因此,数据驱动方法为设计可推广、基于证据且符合当前最佳实践的医嘱集提供了一种很有前景的方法。