Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, AA 1105 MCN, 1161 21st Ave. S, Nashville, TN, TN 37232, USA.
Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Int J Comput Assist Radiol Surg. 2019 Aug;14(8):1317-1327. doi: 10.1007/s11548-019-01988-0. Epub 2019 May 8.
Transcranial focused ultrasound (FUS) is increasingly being explored to modulate neuronal activity. To target neuromodulation, researchers often localize the FUS beam onto the brain region(s) of interest using spatially tracked tools overlaid on pre-acquired images. Here, we quantify the accuracy of optically tracked image-guided FUS with magnetic resonance imaging (MRI) thermometry, evaluate sources of error and demonstrate feasibility of these procedures to target the macaque somatosensory region.
We developed an optically tracked FUS system capable of projecting the transducer focus onto a pre-acquired MRI volume. To measure the target registration error (TRE), we aimed the transducer focus at a desired target in a phantom under image guidance, heated the target while imaging with MR thermometry and then calculated the TRE as the difference between the targeted and heated locations. Multiple targets were measured using either an unbiased or bias-corrected calibration. We then targeted the macaque S1 brain region, where displacement induced by the acoustic radiation force was measured using MR acoustic radiation force imaging (MR-ARFI).
All calibration methods enabled registration with TRE on the order of 3 mm. Unbiased calibration resulted in an average TRE of 3.26 mm (min-max: 2.80-4.53 mm), which was not significantly changed by prospective bias correction (TRE of 3.05 mm; 2.06-3.81 mm, p = 0.55). Restricting motion between the transducer and target and increasing the distance between tracked markers reduced the TRE to 2.43 mm (min-max: 0.79-3.88 mm). MR-ARFI images showed qualitatively similar shape and extent as projected beam profiles in a living non-human primate.
Our study describes methods for image guidance of FUS neuromodulation and quantifies errors associated with this method in a large animal. The workflow is efficient enough for in vivo use, and we demonstrate transcranial MR-ARFI in vivo in macaques for the first time.
经颅聚焦超声(FUS)越来越多地被用于调节神经元活动。为了实现神经调节,研究人员通常使用预先获取的图像上叠加的空间跟踪工具将 FUS 光束定位到感兴趣的脑区。在这里,我们使用磁共振成像(MRI)测温法来量化光学跟踪图像引导 FUS 的准确性,评估误差源,并证明这些方法靶向猕猴感觉区域的可行性。
我们开发了一种能够将换能器焦点投射到预先获取的 MRI 容积上的光学跟踪 FUS 系统。为了测量目标注册误差(TRE),我们在图像引导下将换能器焦点瞄准体模中的目标,用 MR 测温法加热目标,然后计算目标和加热位置之间的 TRE 差值。使用无偏或偏置校正的校准方法测量多个目标。然后,我们靶向猕猴 S1 脑区,使用磁共振声辐射力成像(MR-ARFI)测量由声辐射力引起的位移。
所有校准方法都能以 3mm 左右的 TRE 进行注册。无偏校准导致平均 TRE 为 3.26mm(最小-最大:2.80-4.53mm),前瞻性偏置校正对 TRE 无显著影响(TRE 为 3.05mm;2.06-3.81mm,p=0.55)。限制换能器和目标之间的运动并增加跟踪标记之间的距离将 TRE 降低至 2.43mm(最小-最大:0.79-3.88mm)。MR-ARFI 图像显示出与活体非人类灵长类动物中预测光束轮廓相似的形状和范围。
我们的研究描述了 FUS 神经调节的图像引导方法,并量化了这种方法在大动物中的相关误差。该工作流程足够高效,可用于体内实验,我们首次在活体猕猴中演示了经颅 MR-ARFI。