Suppr超能文献

通过对β-香树素合酶进行基因编辑诱变来培育无皂素的黄豌豆种子。

Creating saponin-free yellow pea seeds by -enabled mutagenesis on β-amyrin synthase.

作者信息

Hodgins Connor L, Salama Eman M, Kumar Rahul, Zhao Yang, Roth Susan A, Cheung Irene Z, Chen Jieyu, Arganosa Gene C, Warkentin Thomas D, Bhowmik Pankaj, Ham Byung-Kook, Ro Dae-Kyun

机构信息

Department of Biological Sciences University of Calgary Calgary Alberta Canada.

Global Institute for Food Security University of Saskatchewan Saskatoon Saskatchewan Canada.

出版信息

Plant Direct. 2024 Jan 11;8(1):e563. doi: 10.1002/pld3.563. eCollection 2024 Jan.

Abstract

Dry pea () seeds are valuable sources of plant protein, dietary fiber, and starch, but their uses in food products are restricted to some extent due to several off-flavor compounds. Saponins are glycosylated triterpenoids and are a major source of bitter, astringent, and metallic off-flavors in pea products. () is the entry point enzyme for saponin biosynthesis in pea and therefore is an ideal target for knock-out using CRISPR/Cas9 genome editing to produce saponin deficient pea varieties. Here, in an elite yellow pea cultivar (CDC Inca), LC/MS analysis identified embryo tissue, not seed coat, as the main location of saponin storage in pea seeds. Differential expression analysis determined that was preferentially expressed in embryo tissue relative to seed coat and was selected for CRISPR/Cas9 genome editing. The efficiency of CRISPR/Cas9 genome editing of was systematically optimized in pea hairy roots. From these optimization procedures, the AtU6-26 promoter was found to be superior to the CaMV35S promoter for gRNA expression, and the use of 37°C was determined to increase the efficiency of CRISPR/Cas9 genome editing. These promoter and culture conditions were then applied to stable transformations. As a result, a bi-allelic mutation (deletion and inversion mutations) was generated in the coding sequence in a T plant, and the segregated plants from the T population showed a 99.8% reduction of saponins in their seeds. Interestingly, a small but statistically significant increase (12%) in protein content with a slight decrease (5%) in starch content was observed in the mutants under phytotron growth conditions. This work demonstrated that flavor-improved traits can be readily introduced in any pea cultivar of interest using CRISPR/Cas9. Further field trials and sensory tests for improved flavor are necessary to assess the practical implications of the saponin-free pea seeds in food applications.

摘要

干豌豆()种子是植物蛋白、膳食纤维和淀粉的宝贵来源,但由于几种异味化合物,它们在食品中的应用在一定程度上受到限制。皂苷是糖基化三萜类化合物,是豌豆产品中苦味、涩味和金属异味的主要来源。()是豌豆中皂苷生物合成的起始酶,因此是使用CRISPR/Cas9基因组编辑敲除以生产皂苷缺陷型豌豆品种的理想靶点。在此,在一个优良的黄豌豆品种(CDC印加)中,液相色谱/质谱分析确定胚胎组织而非种皮是豌豆种子中皂苷储存的主要位置。差异表达分析确定()相对于种皮在胚胎组织中优先表达,并被选择用于CRISPR/Cas9基因组编辑。在豌豆毛状根中系统地优化了()的CRISPR/Cas9基因组编辑效率。从这些优化程序中,发现AtU6 - 26启动子在gRNA表达方面优于CaMV35S启动子,并且确定使用37°C可提高CRISPR/Cas9基因组编辑效率。然后将这些启动子和培养条件应用于稳定转化。结果,在一个T代植株的()编码序列中产生了双等位基因突变(缺失和倒位突变),并且从T代群体中分离出的植株种子中的皂苷含量降低了99.8%。有趣的是,在人工气候箱生长条件下,在()突变体中观察到蛋白质含量有小幅但具有统计学意义的增加(约12%),而淀粉含量略有下降(约5%)。这项工作表明,使用CRISPR/Cas9可以很容易地将风味改良性状引入任何感兴趣的豌豆品种中。为了评估无皂苷豌豆种子在食品应用中的实际意义,需要进一步进行田间试验和改善风味的感官测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ea/10784647/b3e03e52383c/PLD3-8-e563-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验