Suppr超能文献

豆类中的皂苷生物合成

Saponin Biosynthesis in Pulses.

作者信息

Yu Bianyun, Patterson Nii, Zaharia L Irina

机构信息

Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada.

出版信息

Plants (Basel). 2022 Dec 14;11(24):3505. doi: 10.3390/plants11243505.

Abstract

Pulses are a group of leguminous crops that are harvested solely for their dry seeds. As the demand for plant-based proteins grows, pulses are becoming important food crops worldwide. In addition to being a rich source of nutrients, pulses also contain saponins that are traditionally considered anti-nutrients, and impart bitterness and astringency. Saponins are plant secondary metabolites with great structural and functional diversity. Given their diverse functional properties and biological activities, both undesirable and beneficial, saponins have received growing attention. It can be expected that redirecting metabolic fluxes to control the saponin levels and produce desired saponins would be an effective approach to improve the nutritional and sensory quality of the pulses. However, little effort has been made toward understanding saponin biosynthesis in pulses, and, thus there exist sizable knowledge gaps regarding its pathway and regulatory network. In this paper, we summarize the research progress made on saponin biosynthesis in pulses. Additionally, phylogenetic relationships of putative biosynthetic enzymes among multiple pulse species provide a glimpse of the evolutionary routes and functional diversification of saponin biosynthetic enzymes. The review will help us to advance our understanding of saponin biosynthesis and aid in the development of molecular and biotechnological tools for the systematic optimization of metabolic fluxes, in order to produce the desired saponins in pulses.

摘要

豆类是一类豆科作物,仅收获其干燥种子。随着对植物蛋白需求的增长,豆类正成为全球重要的粮食作物。除了是丰富的营养来源外,豆类还含有传统上被认为是抗营养物质的皂苷,并带有苦味和涩味。皂苷是具有高度结构和功能多样性的植物次生代谢产物。鉴于其多样的功能特性和生物活性,既有不良的也有有益的,皂苷受到了越来越多的关注。可以预期,重新引导代谢通量以控制皂苷水平并产生所需的皂苷将是提高豆类营养和感官品质的有效方法。然而,在理解豆类中皂苷生物合成方面所做的努力很少,因此在其途径和调控网络方面存在相当大的知识空白。在本文中,我们总结了豆类中皂苷生物合成的研究进展。此外,多个豆类物种中假定生物合成酶的系统发育关系揭示了皂苷生物合成酶的进化路线和功能多样化。这篇综述将有助于我们加深对皂苷生物合成的理解,并有助于开发分子和生物技术工具,以系统地优化代谢通量,从而在豆类中产生所需的皂苷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058a/9780904/557afaf17d28/plants-11-03505-g001.jpg

相似文献

1
Saponin Biosynthesis in Pulses.
Plants (Basel). 2022 Dec 14;11(24):3505. doi: 10.3390/plants11243505.
2
Triterpenoid biosynthesis and engineering in plants.
Front Plant Sci. 2011 Jun 30;2:25. doi: 10.3389/fpls.2011.00025. eCollection 2011.
3
Molecular activities, biosynthesis and evolution of triterpenoid saponins.
Phytochemistry. 2011 Apr;72(6):435-57. doi: 10.1016/j.phytochem.2011.01.015. Epub 2011 Feb 16.
4
Recent advances in steroidal saponins biosynthesis and in vitro production.
Planta. 2018 Sep;248(3):519-544. doi: 10.1007/s00425-018-2911-0. Epub 2018 May 10.
5
P450s and UGTs: Key Players in the Structural Diversity of Triterpenoid Saponins.
Plant Cell Physiol. 2015 Aug;56(8):1463-71. doi: 10.1093/pcp/pcv062. Epub 2015 May 6.
7
Biosynthesis of triterpenoid saponins in plants.
Adv Biochem Eng Biotechnol. 2002;75:31-49. doi: 10.1007/3-540-44604-4_2.
9
[The glycosyltransferases involved in triterpenoid saponin biosynthesis: a review].
Sheng Wu Gong Cheng Xue Bao. 2022 Mar 25;38(3):1004-1024. doi: 10.13345/j.cjb.210587.

引用本文的文献

3
Creating saponin-free yellow pea seeds by -enabled mutagenesis on β-amyrin synthase.
Plant Direct. 2024 Jan 11;8(1):e563. doi: 10.1002/pld3.563. eCollection 2024 Jan.
5
Botanicals: A promising approach for controlling cecal coccidiosis in poultry.
Front Vet Sci. 2023 Apr 25;10:1157633. doi: 10.3389/fvets.2023.1157633. eCollection 2023.
6
Phytotoxicity of Leaf Saponins and Their Bioherbicide Potential.
Plants (Basel). 2023 Feb 2;12(3):663. doi: 10.3390/plants12030663.

本文引用的文献

1
Effect of biotic stress on the presence of secondary metabolites in field pea grains.
J Sci Food Agric. 2022 Aug 30;102(11):4942-4948. doi: 10.1002/jsfa.11861. Epub 2022 Mar 26.
2
Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products.
Synth Syst Biotechnol. 2022 Feb 2;7(1):602-620. doi: 10.1016/j.synbio.2022.01.001. eCollection 2022 Mar.
3
Bridging the Gaps between Plant and Human Health: A Systematic Review of Soyasaponins.
J Agric Food Chem. 2021 Dec 8;69(48):14387-14401. doi: 10.1021/acs.jafc.1c04819. Epub 2021 Nov 29.
5
Salinity Stress Alters the Secondary Metabolic Profile of , and Their Hybrid (Alborea).
Int J Mol Sci. 2021 May 5;22(9):4882. doi: 10.3390/ijms22094882.
7
Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296. doi: 10.1093/nar/gkab301.
8
β-Amyrin Synthase1 Controls the Accumulation of the Major Saponins Present in Pea (Pisum sativum).
Plant Cell Physiol. 2021 Oct 1;62(5):784-797. doi: 10.1093/pcp/pcab049.
9
A current review of structure, functional properties, and industrial applications of pulse starches for value-added utilization.
Compr Rev Food Sci Food Saf. 2021 May;20(3):3061-3092. doi: 10.1111/1541-4337.12735. Epub 2021 Apr 2.
10
Diurnal metabolic regulation of isoflavones and soyasaponins in soybean roots.
Plant Direct. 2020 Nov 18;4(11):e00286. doi: 10.1002/pld3.286. eCollection 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验