Suppr超能文献

用于定向性状改良的豌豆高效且可重复的遗传转化

Highly Efficient and Reproducible Genetic Transformation in Pea for Targeted Trait Improvement.

作者信息

Kaur Rajvinder, Donoso Thomas, Scheske Chelsea, Lefsrud Mark, Singh Jaswinder

机构信息

Department of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada.

Department of Plant Science, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada.

出版信息

ACS Agric Sci Technol. 2022 Aug 15;2(4):780-787. doi: 10.1021/acsagscitech.2c00084. Epub 2022 Jul 19.

Abstract

A reproducible tissue culture protocol is required to establish an efficient genetic transformation system in highly recalcitrant pea genotypes. High-quality callus with superior regeneration ability was induced and regenerated on optimized media enriched with copper sulfate and cytokinins, 6-benzylaminopurine and indole-3-acetic acid. This successful regeneration effort led to the development of a highly efficient transformation system for five pea genotypes using immature and mature seeds. The new transformation protocol included the addition of elevated glucose and sucrose concentrations for cocultivation and inoculation media to improve callus induction and regeneration, thus resulting in consistent transformation frequencies. Using the strain AGL1, a transformation frequency of up to 47% was obtained for the pea genotype Greenfeast, using either of two different selection marker genes, or , sourced from two different vectors. Sixty-two transgenic pea events were able to survive kanamycin and phosphinothricin selection. A total of 30 transgenic events for Greenfeast, 15 for CN 43016, 9 for snap pea, and 5 for CN 31237 are reported herein. Two additional transgenic events were recovered from particle gun bombardment experiments. Quantitative RT-PCR analysis confirmed the transgenic status of pea plants, indicating elevated expression of relevant genes cloned into the transformation constructs.

摘要

在高度难转化的豌豆基因型中建立高效的遗传转化系统需要一个可重复的组织培养方案。在富含硫酸铜和细胞分裂素(6-苄基腺嘌呤和吲哚-3-乙酸)的优化培养基上诱导并再生出了具有优异再生能力的高质量愈伤组织。这一成功的再生成果促成了一种利用未成熟和成熟种子对五种豌豆基因型的高效转化系统的开发。新的转化方案包括在共培养和接种培养基中添加更高浓度的葡萄糖和蔗糖,以提高愈伤组织的诱导和再生能力,从而使转化频率保持一致。使用AGL1菌株,对于豌豆基因型Greenfeast,使用源自两种不同载体的两种不同选择标记基因或,获得了高达47%的转化频率。62个转基因豌豆事件能够在卡那霉素和草丁膦选择下存活。本文报道了Greenfeast的30个转基因事件、CN 43016的15个、甜脆豌豆的9个以及CN 31237的5个。另外从粒子枪轰击实验中获得了2个转基因事件。定量RT-PCR分析证实了豌豆植株的转基因状态,表明克隆到转化构建体中的相关基因表达上调。

相似文献

1
Highly Efficient and Reproducible Genetic Transformation in Pea for Targeted Trait Improvement.
ACS Agric Sci Technol. 2022 Aug 15;2(4):780-787. doi: 10.1021/acsagscitech.2c00084. Epub 2022 Jul 19.
2
Optimized -mediated sorghum transformation protocol and molecular data of transgenic sorghum plants.
In Vitro Cell Dev Biol Plant. 2014;50(1):9-18. doi: 10.1007/s11627-013-9583-z. Epub 2013 Dec 13.
3
Exploring potential of copper and silver nano particles to establish efficient callogenesis and regeneration system for wheat ( L.).
GM Crops Food. 2021 Jan 2;12(1):564-585. doi: 10.1080/21645698.2021.1917975. Epub 2021 May 3.
4
In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro.
Physiol Mol Biol Plants. 2008 Oct;14(4):321-8. doi: 10.1007/s12298-008-0030-2. Epub 2009 Feb 26.
5
Robust genetic transformation of sorghum ( L.) using differentiating embryogenic callus induced from immature embryos.
Plant Methods. 2017 Dec 8;13:109. doi: 10.1186/s13007-017-0260-9. eCollection 2017.
6
Transformation and Regeneration of Two Cultivars of Pea (Pisum sativum L.).
Plant Physiol. 1993 Mar;101(3):751-757. doi: 10.1104/pp.101.3.751.
7
In vitro plant regeneration and genetic transformation of Dichanthium annulatum.
DNA Cell Biol. 2005 Nov;24(11):670-9. doi: 10.1089/dna.2005.24.670.
9
Transgenic Pinus radiata from Agrobacterium tumefaciens-mediated transformation of cotyledons.
Plant Cell Rep. 2004 Jul;22(12):894-902. doi: 10.1007/s00299-004-0769-z. Epub 2004 Feb 25.

引用本文的文献

1
A Protocol for High-efficiency Transformation and Genome Editing in Elite Wheat Cultivars.
Methods Mol Biol. 2025;2898:307-320. doi: 10.1007/978-1-0716-4378-5_20.
2
Metabolic engineering-induced transcriptome reprogramming of lipid biosynthesis enhances oil composition in oat.
Plant Biotechnol J. 2024 Dec;22(12):3459-3472. doi: 10.1111/pbi.14467. Epub 2024 Sep 25.
3
Finger millet: a hero in the making to combat food insecurity.
Theor Appl Genet. 2024 May 21;137(6):139. doi: 10.1007/s00122-024-04637-6.
4
Creating saponin-free yellow pea seeds by -enabled mutagenesis on β-amyrin synthase.
Plant Direct. 2024 Jan 11;8(1):e563. doi: 10.1002/pld3.563. eCollection 2024 Jan.

本文引用的文献

2
Pulse Crop Genetics for a Sustainable Future: Where We Are Now and Where We Should Be Heading.
Front Plant Sci. 2020 Apr 30;11:531. doi: 10.3389/fpls.2020.00531. eCollection 2020.
3
Improving pulse crops as a source of protein, starch and micronutrients.
Nutr Bull. 2019 Sep;44(3):202-215. doi: 10.1111/nbu.12399. Epub 2019 Aug 22.
4
A reference genome for pea provides insight into legume genome evolution.
Nat Genet. 2019 Sep;51(9):1411-1422. doi: 10.1038/s41588-019-0480-1. Epub 2019 Sep 2.
5
A simple system for pea transformation.
Plant Cell Rep. 1997 May;16(8):513-519. doi: 10.1007/BF01142315.
6
Molecular and functional characterization of cry1Ac transgenic pea lines.
GM Crops Food. 2016 Oct;7(3-4):159-174. doi: 10.1080/21645698.2016.1240148.
8
Response of Pea Varieties to Damage Degree of Pea Weevil, Bruchus pisorum L.
Scientifica (Cairo). 2016;2016:8053860. doi: 10.1155/2016/8053860. Epub 2016 Mar 3.
9
Health benefits of legumes and pulses with a focus on Australian sweet lupins.
Asia Pac J Clin Nutr. 2016;25(1):1-17. doi: 10.6133/apjcn.2016.25.1.23.
10
Optimized -mediated sorghum transformation protocol and molecular data of transgenic sorghum plants.
In Vitro Cell Dev Biol Plant. 2014;50(1):9-18. doi: 10.1007/s11627-013-9583-z. Epub 2013 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验