Suppr超能文献

基于深度学习的有限带宽相机检测对光学捕获的纳米颗粒和细胞外囊泡的尺寸预测

Deep learning-based size prediction for optical trapped nanoparticles and extracellular vesicles from limited bandwidth camera detection.

作者信息

Boateng Derrick, Chu Kaiqin, Smith Zachary J, Du Jun, Dai Yichuan

机构信息

National Engineering Research Center of Speech and Language Information Processing, Department of Electronic Engineering and Information Science, University of Science and Technology of China, China.

Suzhou Institute for Advanced Research, University of Science and Technology of China, China.

出版信息

Biomed Opt Express. 2023 Dec 4;15(1):1-13. doi: 10.1364/BOE.501430. eCollection 2024 Jan 1.

Abstract

Due to its ability to record position, intensity, and intensity distribution information, camera-based monitoring of nanoparticles in optical traps can enable multi-parametric morpho-optical characterization at the single-particle level. However, blurring due to the relatively long (10s of microsecond) integration times and aliasing from the resulting limited temporal bandwidth affect the detected particle position when considering nanoparticles in traps with strong stiffness, leading to inaccurate size predictions. Here, we propose a ResNet-based method for accurate size characterization of trapped nanoparticles, which is trained by considering only simulated time series data of nanoparticles' constrained Brownian motion. Experiments prove the method outperforms state-of-art sizing algorithms such as adjusted Lorentzian fitting or CNN-based networks on both standard nanoparticles and extracellular vesicles (EVs), as well as maintains good accuracy even when measurement times are relatively short (<1s per particle). On samples of clinical EVs, our network demonstrates a well-generalized ability to accurately determine the EV size distribution, as confirmed by comparison with gold-standard nanoparticle tracking analysis (NTA). Furthermore, by combining the sizing network with still frame images from high-speed video, the camera-based optical tweezers have the unique capacity to quantify both the size and refractive index of bio-nanoparticles at the single-particle level. These experiments prove the proposed sizing network as an ideal path for predicting the morphological heterogeneity of bio-nanoparticles in optical potential trapping-related measurements.

摘要

由于基于相机的光阱中纳米颗粒监测能够记录位置、强度和强度分布信息,因此可以在单颗粒水平上实现多参数形态光学表征。然而,在考虑具有高刚度光阱中的纳米颗粒时,由于相对较长(数十微秒)的积分时间导致的模糊以及由此产生的有限时间带宽引起的混叠,会影响检测到的颗粒位置,从而导致尺寸预测不准确。在此,我们提出了一种基于残差网络(ResNet)的方法,用于精确表征被捕获纳米颗粒的尺寸,该方法仅通过考虑纳米颗粒受限布朗运动的模拟时间序列数据进行训练。实验证明,该方法在标准纳米颗粒和细胞外囊泡(EV)上均优于诸如调整洛伦兹拟合或基于卷积神经网络(CNN)的网络等现有尺寸测量算法,并且即使在测量时间相对较短(每个颗粒<1秒)时也能保持良好的准确性。在临床EV样本上,我们的网络展示了准确确定EV尺寸分布的良好泛化能力,这通过与金标准纳米颗粒跟踪分析(NTA)的比较得到证实。此外,通过将尺寸测量网络与高速视频中的静态帧图像相结合,基于相机的光镊具有在单颗粒水平上量化生物纳米颗粒尺寸和折射率的独特能力。这些实验证明,所提出的尺寸测量网络是预测光势阱相关测量中生物纳米颗粒形态异质性的理想途径。

相似文献

1
2
Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels.
Anal Chem. 2020 Apr 7;92(7):5585-5594. doi: 10.1021/acs.analchem.0c00607. Epub 2020 Mar 20.
3
Label-free discrimination of extracellular vesicles from large lipoproteins.
J Extracell Vesicles. 2023 Aug;12(8):e12348. doi: 10.1002/jev2.12348.
5
Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms.
J Extracell Vesicles. 2021 Apr;10(6):e12079. doi: 10.1002/jev2.12079. Epub 2021 Apr 6.
6
Characterizing Extracellular Vesicles Using Nanoparticle-Tracking Analysis.
Methods Mol Biol. 2022;2508:353-373. doi: 10.1007/978-1-0716-2376-3_23.
8
Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles.
J Extracell Vesicles. 2014 Nov 24;3:25361. doi: 10.3402/jev.v3.25361. eCollection 2014.
10
Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles.
Molecules. 2024 Oct 1;29(19):4672. doi: 10.3390/molecules29194672.

引用本文的文献

1
Biomedical Optics Express Feature Issue Introduction: Optical Manipulation and Its Applications (OMA) 2023.
Biomed Opt Express. 2024 Jan 29;15(2):1192-1194. doi: 10.1364/BOE.519305. eCollection 2024 Feb 1.

本文引用的文献

1
Three-dimensional deep regression-based light scattering imaging system for nanoscale exosome analysis.
Biomed Opt Express. 2023 Apr 18;14(5):2055-2067. doi: 10.1364/BOE.483791. eCollection 2023 May 1.
3
Hybrid Principal Component Analysis Denoising Enables Rapid, Label-Free Morpho-Chemical Quantification of Individual Nanoliposomes.
Anal Chem. 2022 Oct 18;94(41):14232-14241. doi: 10.1021/acs.analchem.2c02518. Epub 2022 Oct 6.
4
Refractive Index Determination of Individual Viruses and Small Extracellular Vesicles in Aqueous Media Using Nano-Flow Cytometry.
Anal Chem. 2022 Oct 18;94(41):14299-14307. doi: 10.1021/acs.analchem.2c02833. Epub 2022 Sep 9.
5
Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels.
Anal Chem. 2020 Apr 7;92(7):5585-5594. doi: 10.1021/acs.analchem.0c00607. Epub 2020 Mar 20.
7
Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry.
J Extracell Vesicles. 2019 Jul 25;8(1):1643671. doi: 10.1080/20013078.2019.1643671. eCollection 2019.
8
Single-Nanoparticle Tracking with Angstrom Localization Precision and Microsecond Time Resolution.
Biophys J. 2018 Dec 18;115(12):2413-2427. doi: 10.1016/j.bpj.2018.11.016. Epub 2018 Nov 17.
10
Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D.
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):9026-9031. doi: 10.1073/pnas.1804420115. Epub 2018 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验