Suppr超能文献

从电子健康记录数据仓库中获取和利用临床及基因组数据。

Accessing and utilizing clinical and genomic data from an electronic health record data warehouse.

作者信息

Arnold Cosby G, Sonn Brandon, Meyers Frederick J, Vest Alexis, Puls Richie, Zirkler Estelle, Edelmann Michelle, Brooks Ian M, Monte Andrew A

机构信息

Department of Emergency Medicine, School of Medicine, University of California, Davis, 4150 V Street #2100, Sacramento, CA 95817, USA.

Department of Emergency Medicine, University of Colorado Denver-Anschutz Medical Center, University of Colorado School of Medicine, Mail Stop B-215, 12401 East 17th Avenue, Aurora, CO 80045, USA.

出版信息

Transl Med Commun. 2023;8. doi: 10.1186/s41231-023-00140-0. Epub 2023 Mar 2.

Abstract

Electronic health records (EHRs) and linked biobanks have tremendous potential to advance biomedical research and ultimately improve the health of future generations. Repurposing EHR data for research is not without challenges, however. In this paper, we describe the processes and considerations necessary to successfully access and utilize a data warehouse for research. Although imperfect, data warehouses are a powerful tool for harnessing a large amount of data to phenotype disease. They will have increasing relevance and applications in clinical research with growing sophistication in processes for EHR data abstraction, biobank integration, and cross-institutional linkage.

摘要

电子健康记录(EHRs)和相关生物样本库在推进生物医学研究并最终改善子孙后代健康方面具有巨大潜力。然而,将EHR数据用于研究并非没有挑战。在本文中,我们描述了成功访问和利用数据仓库进行研究所需的流程和注意事项。尽管存在不足,但数据仓库是利用大量数据来确定疾病表型的强大工具。随着EHR数据提取、生物样本库整合和跨机构联系流程的日益成熟,它们在临床研究中的相关性和应用将不断增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2135/10786622/5704a7074102/nihms-1904947-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验