College of Land and Environment, Shenyang Agricultural University, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Arable Land Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Sci Total Environ. 2024 Mar 10;915:170018. doi: 10.1016/j.scitotenv.2024.170018. Epub 2024 Jan 13.
Microbial carbon (C) use efficiency (CUE) plays a key role in soil C storage. The predation of protists on bacteria and fungi has potential impacts on the global C cycle. However, under conservation tillage conditions, the effects of multitrophic interactions on soil microbial CUE are still unclear. Here, we investigate the multitrophic network (especially the keystone ecological cluster) and its regulation of soil microbial CUE and soil organic C (SOC) under different long-term (15-year) tillage practices. We found that conservation tillage (CT) significantly enhanced microbial CUE, turnover, and SOC (P < 0.05) compared to traditional tillage (control, CK). At the same time, tillage practice and soil depth had significant effects on the structure of fungal and protistan communities. Furthermore, the soil biodiversity of the keystone cluster was positively correlated with the microbial physiological traits (CUE, microbial growth rate (MGR), microbial respiration rate (Rs), microbial turnover) and SOC (P < 0.05). Protistan richness played the strongest role in directly shaping the keystone cluster. Compared with CK, CT generally enhanced the correlation between microbial communities and microbial physiological characteristics and SOC. Overall, our results illustrate that the top-down control (the organisms at higher trophic levels affect the organisms at lower trophic levels) of protists in the soil micro-food web plays an important role in improving microbial CUE under conservation tillage. Our findings provide a theoretical basis for promoting the application of protists in targeted microbial engineering and contribute to the promotion of conservation agriculture and the improvement of soil C sequestration potential.
微生物碳 (C) 利用效率 (CUE) 在土壤 C 储存中起着关键作用。原生动物对细菌和真菌的捕食作用对全球 C 循环有潜在影响。然而,在保护性耕作条件下,多营养级相互作用对土壤微生物 CUE 的影响仍不清楚。在这里,我们研究了多营养级网络(特别是关键生态类群)及其对不同长期(15 年)耕作条件下土壤微生物 CUE 和土壤有机 C(SOC)的调节作用。我们发现,与传统耕作(对照,CK)相比,保护性耕作(CT)显著提高了微生物 CUE、周转率和 SOC(P<0.05)。同时,耕作方式和土壤深度对真菌和原生动物群落的结构有显著影响。此外,关键类群的土壤生物多样性与微生物生理特性(CUE、微生物生长率(MGR)、微生物呼吸率(Rs)、微生物周转率)和 SOC 呈正相关(P<0.05)。原生动物丰富度在直接塑造关键类群方面起着最强的作用。与 CK 相比,CT 通常增强了微生物群落与微生物生理特征和 SOC 之间的相关性。总体而言,我们的结果表明,土壤微型食物网中原生动物的自上而下控制(较高营养级别的生物影响较低营养级别的生物)在保护性耕作下提高微生物 CUE 中起着重要作用。我们的研究结果为在目标微生物工程中促进原生动物的应用提供了理论依据,并有助于促进保护性农业的应用和提高土壤 C 封存潜力。