Suppr超能文献

在有噪声的中尺度量子计算机上的精确非共价相互作用能:二阶对称适配微扰理论。

Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers second-order symmetry-adapted perturbation theory.

作者信息

Loipersberger Matthias, Malone Fionn D, Welden Alicia R, Parrish Robert M, Fox Thomas, Degroote Matthias, Kyoseva Elica, Moll Nikolaj, Santagati Raffaele, Streif Michael

机构信息

QC Ware Corporation, Palo Alto CA 94301 USA

Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG Birkendorfer Straße 65 88397 Biberach an der Riß Germany.

出版信息

Chem Sci. 2023 Feb 23;14(13):3587-3599. doi: 10.1039/d2sc05896k. eCollection 2023 Mar 29.

Abstract

The calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency. Of particular note, we present a quantum extended random-phase approximation (ERPA) treatment of the SAPT second-order induction and dispersion terms, including exchange counterparts. Together with previous work on first-order terms (, 2022, , 3094), this provides a recipe for complete SAPT(VQE) interaction energies up to second order, which is a well established truncation. The SAPT interaction energy terms are computed as first-level observables with no subtraction of monomer energies invoked, and the only quantum observations needed are the VQE one- and two-particle density matrices. We find empirically that SAPT(VQE) can provide accurate interaction energies even with coarsely optimized, low circuit depth wavefunctions from a quantum computer, simulated through ideal statevectors. The errors of the total interaction energy are orders of magnitude lower than the corresponding VQE total energy errors of the monomer wavefunctions. In addition, we present heme-nitrosyl model complexes as a system class for near term quantum computing simulations. They are strongly correlated, biologically relevant and difficult to simulate with classical quantum chemical methods. This is illustrated with density functional theory (DFT) as the predicted interaction energies exhibit a strong sensitivity with respect to the choice of functional. Thus, this work paves the way to obtain accurate interaction energies on a NISQ-era quantum computer with few quantum resources. It is the first step in alleviating one of the major challenges in quantum chemistry, where in-depth knowledge of both the method and system is required to reliably generate accurate interaction energies.

摘要

在有噪声的中尺度量子(NISQ)计算机上计算非共价相互作用能,直接应用现有的量子算法似乎具有挑战性。例如,使用变分量子本征求解器(VQE)的标准超分子方法需要对片段的总能量进行极其精确的解析,以便准确减去相互作用能。在此,我们提出一种对称适配微扰理论(SAPT)方法,该方法可能以高量子资源效率提供相互作用能。特别值得注意的是,我们提出了一种对SAPT二阶诱导和色散项(包括交换项)的量子扩展随机相位近似(ERPA)处理方法。结合之前关于一阶项的工作(,2022,,3094),这为计算直至二阶的完整SAPT(VQE)相互作用能提供了一种方法,这是一种成熟的截断方法。SAPT相互作用能项作为一级可观测量进行计算,无需减去单体能量,所需的唯一量子观测是VQE单粒子和双粒子密度矩阵。我们通过经验发现,即使使用通过理想态矢模拟的量子计算机的粗略优化、低电路深度波函数,SAPT(VQE)也能提供准确的相互作用能。总相互作用能的误差比单体波函数相应的VQE总能量误差低几个数量级。此外,我们提出血红素 - 亚硝酰基模型配合物作为近期量子计算模拟的一类系统。它们具有强相关性、与生物学相关且难以用经典量子化学方法模拟。以密度泛函理论(DFT)为例,预测的相互作用能对泛函的选择表现出强烈的敏感性。因此,这项工作为在NISQ时代的量子计算机上用很少的量子资源获得准确的相互作用能铺平了道路。这是缓解量子化学中一个主要挑战的第一步,在量子化学中,需要对方法和系统有深入的了解才能可靠地生成准确的相互作用能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验