HUN-REN-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Humanbiology, University of Debrecen, Debrecen, Hungary.
Biol Futur. 2023 Dec;74(4):359-367. doi: 10.1007/s42977-023-00200-4. Epub 2024 Jan 16.
Biodiversity is being lost at an unprecedented rate on Earth. As a first step to more effectively combat this process we need efficient methods to monitor biodiversity changes. Recent technological advance can provide powerful tools (e.g. camera traps, digital acoustic recorders, satellite imagery, social media records) that can speed up the collection of biological data. Nevertheless, the processing steps of the raw data served by these tools are still painstakingly slow. A new computer technology, deep learning based artificial intelligence, might, however, help. In this short and subjective review I oversee recent technological advances used in conservation biology, highlight problems of processing their data, shortly describe deep learning technology and show case studies of its use in conservation biology. Some of the limitations of the technology are also highlighted.
生物多样性正在以前所未有的速度在地球上消失。作为更有效地应对这一过程的第一步,我们需要有效的方法来监测生物多样性的变化。最近的技术进步可以提供强大的工具(例如,相机陷阱、数字声学记录器、卫星图像、社交媒体记录),可以加快生物数据的收集。然而,这些工具提供的原始数据的处理步骤仍然非常缓慢。一种新的计算机技术,基于深度学习的人工智能,可能会有所帮助。在这篇简短而主观的综述中,我回顾了保护生物学中使用的最新技术进步,强调了处理其数据的问题,简要描述了深度学习技术,并展示了其在保护生物学中的应用案例研究。还强调了该技术的一些局限性。