August Tom A, Pescott Oliver L, Joly Alexis, Bonnet Pierre
UK Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK.
INRIA Sophia-Antipolis - ZENITH Team, LIRMM - UMR 5506 - CC 477, 161 Rue Ada, 34095 Montpellier Cedex 5, France.
Patterns (N Y). 2020 Oct 9;1(7):100116. doi: 10.1016/j.patter.2020.100116.
The increasing availability of digital images, coupled with sophisticated artificial intelligence (AI) techniques for image classification, presents an exciting opportunity for biodiversity researchers to create new datasets of species observations. We investigated whether an AI plant species classifier could extract previously unexploited biodiversity data from social media photos (Flickr). We found over 60,000 geolocated images tagged with the keyword "flower" across an urban and rural location in the UK and classified these using AI, reviewing these identifications and assessing the representativeness of images. Images were predominantly biodiversity focused, showing single species. Non-native garden plants dominated, particularly in the urban setting. The AI classifier performed best when photos were focused on single native species in wild situations but also performed well at higher taxonomic levels (genus and family), even when images substantially deviated from this. We present a checklist of questions that should be considered when undertaking a similar analysis.
数字图像的可得性不断提高,再加上用于图像分类的先进人工智能(AI)技术,为生物多样性研究人员创造新的物种观测数据集提供了一个令人兴奋的机会。我们调查了一个AI植物物种分类器是否能够从社交媒体照片(Flickr)中提取以前未被利用的生物多样性数据。我们在英国的一个城乡地区发现了超过60000张标记有“花”关键词的地理定位图像,并使用AI对这些图像进行分类,审查这些识别结果并评估图像的代表性。图像主要聚焦于生物多样性,展示单个物种。非本地园林植物占主导地位,尤其是在城市环境中。当照片聚焦于野生环境中的单个本地物种时,AI分类器表现最佳,但在较高的分类级别(属和科)也表现良好,即使图像与这种情况有很大偏差。我们列出了在进行类似分析时应考虑的一系列问题。