CCMAR - Center of Marine Sciences, University of the Algarve, 8005-139, Faro, Portugal.
Department of Geography, University of California, Los Angeles, CA, USA.
Sci Rep. 2022 Dec 23;12(1):22196. doi: 10.1038/s41598-022-26439-w.
Climate change is producing shifts in the distribution and abundance of marine species. Such is the case of kelp forests, important marine ecosystem-structuring species whose distributional range limits have been shifting worldwide. Synthesizing long-term time series of kelp forest observations is therefore vital for understanding the drivers shaping ecosystem dynamics and for predicting responses to ongoing and future climate changes. Traditional methods of mapping kelp from satellite imagery are time-consuming and expensive, as they require high amount of human effort for image processing and algorithm optimization. Here we propose the use of mask region-based convolutional neural networks (Mask R-CNN) to automatically assimilate data from open-source satellite imagery (Landsat Thematic Mapper) and detect kelp forest canopy cover. The analyses focused on the giant kelp Macrocystis pyrifera along the shorelines of southern California and Baja California in the northeastern Pacific. Model hyper-parameterization was tuned through cross-validation procedures testing the effect of data augmentation, and different learning rates and anchor sizes. The optimal model detected kelp forests with high performance and low levels of overprediction (Jaccard's index: 0.87 ± 0.07; Dice index: 0.93 ± 0.04; over prediction: 0.06) and allowed reconstructing a time series of 32 years in Baja California (Mexico), a region known for its high variability in kelp owing to El Niño events. The proposed framework based on Mask R-CNN now joins the list of cost-efficient tools for long-term marine ecological monitoring, facilitating well-informed biodiversity conservation, management and decision making.
气候变化正在导致海洋物种的分布和丰度发生变化。例如,巨藻林就是一种重要的海洋生态系统结构物种,其分布范围极限已在全球范围内发生变化。因此,综合长期巨藻林观测的时间序列对于了解塑造生态系统动态的驱动因素以及预测对正在发生和未来气候变化的响应至关重要。从卫星图像中绘制巨藻的传统方法既耗时又昂贵,因为它们需要大量的人力来进行图像处理和算法优化。在这里,我们提出使用基于掩模区域的卷积神经网络(Mask R-CNN)来自动同化来自开源卫星图像(陆地卫星专题制图仪)的数据并检测巨藻林冠层覆盖。分析重点是沿太平洋东北部加利福尼亚南部和下加利福尼亚的海岸线上的巨型巨藻 Macrocystis pyrifera。通过交叉验证程序调整模型超参数化,测试数据增强、不同学习率和锚点大小的效果。优化后的模型具有高性能和低过预测水平(Jaccard 指数:0.87±0.07;Dice 指数:0.93±0.04;过预测:0.06),能够检测巨藻林,并重建下加利福尼亚长达 32 年的时间序列(墨西哥),该地区以厄尔尼诺事件导致的巨藻高度变化而闻名。基于 Mask R-CNN 的拟议框架现在加入了低成本的长期海洋生态监测工具列表,有助于进行明智的生物多样性保护、管理和决策。