Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057.
School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 PN40 Ireland.
J Neurosci. 2024 Feb 21;44(8):e1560232024. doi: 10.1523/JNEUROSCI.1560-23.2024.
Subconcussive head impacts are associated with the development of acute and chronic cognitive deficits. We recently reported that high-frequency head impact (HFHI) causes chronic cognitive deficits in mice through synaptic changes. To better understand the mechanisms underlying HFHI-induced memory decline, we used TRAP2/Ai32 transgenic mice to enable visualization and manipulation of memory engrams. We labeled the fear memory engram in male and female mice exposed to an aversive experience and subjected them to sham or HFHI. Upon subsequent exposure to natural memory recall cues, sham, but not HFHI, mice successfully retrieved fearful memories. In sham mice the hippocampal engram neurons exhibited synaptic plasticity, evident in amplified AMPA:NMDA ratio, enhanced AMPA-weighted tau, and increased dendritic spine volume compared with nonengram neurons. In contrast, although HFHI mice retained a comparable number of hippocampal engram neurons, these neurons did not undergo synaptic plasticity. This lack of plasticity coincided with impaired activation of the engram network, leading to retrograde amnesia in HFHI mice. We validated that the memory deficits induced by HFHI stem from synaptic plasticity impairments by artificially activating the engram using optogenetics and found that stimulated memory recall was identical in both sham and HFHI mice. Our work shows that chronic cognitive impairment after HFHI is a result of deficiencies in synaptic plasticity instead of a loss in neuronal infrastructure, and we can reinstate a forgotten memory in the amnestic brain by stimulating the memory engram. Targeting synaptic plasticity may have therapeutic potential for treating memory impairments caused by repeated head impacts.
亚脑震荡性头部撞击与急性和慢性认知缺陷的发展有关。我们最近报道,高频头部撞击(HFHI)通过突触变化导致小鼠慢性认知缺陷。为了更好地理解 HFHI 引起记忆下降的机制,我们使用 TRAP2/Ai32 转基因小鼠来可视化和操作记忆印痕。我们对暴露于厌恶体验的雄性和雌性小鼠进行恐惧记忆印痕标记,并对它们进行假处理或 HFHI 处理。随后,当它们接触到自然记忆召回线索时,假处理组而非 HFHI 组的小鼠成功地回忆出了恐惧记忆。在假处理组的小鼠中,海马体印痕神经元表现出突触可塑性,表现在 AMPA:NMDA 比值增加、增强的 AMPA 加权 tau 以及与非印痕神经元相比增加的树突棘体积。相比之下,尽管 HFHI 组的小鼠保留了相当数量的海马体印痕神经元,但这些神经元没有经历突触可塑性。这种缺乏可塑性与印痕网络的激活受损同时发生,导致 HFHI 组的逆行性遗忘。我们通过光遗传学人工激活印痕来验证 HFHI 引起的记忆缺陷源于突触可塑性损伤,发现刺激记忆召回在假处理和 HFHI 组的小鼠中是相同的。我们的工作表明,HFHI 后的慢性认知障碍是由于突触可塑性缺陷而不是神经元结构的丧失所致,并且我们可以通过刺激记忆印痕来恢复遗忘的记忆。针对突触可塑性可能具有治疗因反复头部撞击引起的记忆损伤的治疗潜力。
2025-1
Front Cell Neurosci. 2022-1-18
Philos Trans R Soc Lond B Biol Sci. 2024-7-29
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
Curr Biol. 2023-1-23
Nat Neurosci. 2023-2
Prog Neurobiol. 2021-5
Nat Neurosci. 2020-6-8