Suppr超能文献

基于卷积神经网络的转移学习的早期黑胡椒叶病害预测。

Early stage black pepper leaf disease prediction based on transfer learning using ConvNets.

机构信息

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, India.

Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education (MAHE), Manipal, India.

出版信息

Sci Rep. 2024 Jan 16;14(1):1404. doi: 10.1038/s41598-024-51884-0.

Abstract

Plants get exposed to diseases, insects and fungus. This causes heavy damages to crop resulting in various leaves diseases. Leaf diseases can be diagnosed at an early stage with the aid of a smart computer vision system and timely disease prevention can be targeted. Black pepper is a medicinal plant that is extensively used in Ayurvedic medicine because of its therapeutic properties. The proposed work represents an intelligent transfer learning technique through state-of-the-art deep learning implementation using convolutional neural network to predict the presence of prominent diseases in black pepper leaves. The ImageNet dataset available online is used for training deep neural network. Later, this trained network is utilized for the prediction of the newly developed black pepper leaf image dataset. The developed data set consist of real time leaf images, which are candidly taken from the fields and annotated under supervision of an expert. The leaf diseases considered are anthracnose, slow wilt, early stage phytophthora, phytophthora and yellowing. The hyperparameters chosen for tuning in to deep learning models are initial learning rates, optimization algorithm, image batches, epochs, validation and training data, etc. The accuracy obtained with 0.001 learning rate ranges from 99.1 to 99.7% for the Inception V3, GoogleNet, SqueezeNet and Resnet18 models. Proposed Resnet18 model outperforms all model with 99.67% accuracy. The resulting validation accuracy obtained using these models is high and the validation loss is low. This work represents improvement in agriculture and a cutting edge deep neural network method for early stage leaf disease identification and prediction. This is an approach using a deep learning network to predict early stage black pepper leaf diseases.

摘要

植物会受到疾病、昆虫和真菌的侵害。这会对作物造成严重损害,导致各种叶片疾病。借助智能计算机视觉系统可以在早期诊断叶片疾病,并可以有针对性地进行及时的疾病预防。黑胡椒是一种药用植物,由于其治疗特性,在阿育吠陀医学中被广泛使用。这项工作代表了一种通过使用最先进的深度学习实现的智能迁移学习技术,该技术使用卷积神经网络来预测黑胡椒叶片中突出疾病的存在。在线上可使用 ImageNet 数据集进行深度神经网络训练。然后,利用这个训练好的网络对新开发的黑胡椒叶片图像数据集进行预测。开发的数据集中包含实时叶片图像,这些图像是在专家的监督下从实地拍摄并进行标注的。考虑的叶片疾病包括炭疽病、慢性萎蔫、早期疫霉病、疫霉病和黄化病。在调整深度学习模型的超参数时选择的参数包括初始学习率、优化算法、图像批次、时期、验证和训练数据等。使用 0.001 学习率时,Inception V3、GoogleNet、SqueezeNet 和 Resnet18 模型的准确率范围从 99.1%到 99.7%。所提出的 Resnet18 模型的准确率优于所有模型,达到 99.67%。使用这些模型获得的验证准确率较高,验证损失较低。这项工作代表了农业的改进和早期叶片疾病识别和预测的前沿深度学习方法。这是一种使用深度学习网络预测早期黑胡椒叶片疾病的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a308/10791634/1241fd96a8ad/41598_2024_51884_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验