i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041, Madrid, Spain.
Mol Psychiatry. 2024 Mar;29(3):847-857. doi: 10.1038/s41380-023-02376-6. Epub 2024 Jan 16.
Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aβ), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aβ instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aβ associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and β-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.
阿尔茨海默病(AD)目前受到临床治疗选择有限的限制。最初的病理生理事件可以追溯到临床症状出现前几十年,涉及到脑外神经元斑块中 40-42 个氨基酸组成的淀粉样β(Aβ)肽的过度积累。生化和组织学研究表明,Aβ的过度积累引发了微管结合轴突蛋白 tau 的异常磷酸化和分泌的异常增加。过度磷酸化的 tau 聚积到神经元内神经原纤维缠结中,反过来又与小胶质细胞功能障碍和反应性星形胶质细胞有关,最终导致突触功能障碍和神经退行性变。随着神经退行性变的进展,它会导致 AD 的轻度临床症状,最终可能发展为明显的痴呆。AD 中的突触丢失甚至可能在 tau 改变之前发生,并可能与早期 AD 中与可溶性寡聚形式 Aβ相关的可能升高有关。这些发现主要依赖于死后尸检检查,这些检查通常涉及数量有限的患者。在过去的十年中,已经开发出了一系列的液体生物标志物,如神经颗粒蛋白、α-突触核蛋白、类视黄醇蛋白 1(VILIP-1)、神经元五肽 2 和β-突触核蛋白,以及正电子发射断层扫描(PET)标志物,如突触小泡糖蛋白 2A。这些进展促进了探索 AD 患者中的突触标志物如何与认知障碍相关。然而,指示突触丢失的液体生物标志物仅在脑脊液(CSF)中得到验证,而不是在血浆中,除了 VILIP-1 之外。最有前途的 PET 示踪剂[C]UCB-J 目前面临着阻碍其广泛临床应用的重大挑战,主要是因为需要回旋加速器。因此,需要进行更多的研究来探索突触病理生物标志物。这不仅将使它们能够广泛应用于临床,而且还将完善 AD 药物临床试验的优化过程。