Suppr超能文献

方法学放射组学评分(METRICS):一种由欧洲医学影像信息学会(EuSoMII)认可的放射组学研究质量评分工具。

METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII.

作者信息

Kocak Burak, Akinci D'Antonoli Tugba, Mercaldo Nathaniel, Alberich-Bayarri Angel, Baessler Bettina, Ambrosini Ilaria, Andreychenko Anna E, Bakas Spyridon, Beets-Tan Regina G H, Bressem Keno, Buvat Irene, Cannella Roberto, Cappellini Luca Alessandro, Cavallo Armando Ugo, Chepelev Leonid L, Chu Linda Chi Hang, Demircioglu Aydin, deSouza Nandita M, Dietzel Matthias, Fanni Salvatore Claudio, Fedorov Andrey, Fournier Laure S, Giannini Valentina, Girometti Rossano, Groot Lipman Kevin B W, Kalarakis Georgios, Kelly Brendan S, Klontzas Michail E, Koh Dow-Mu, Kotter Elmar, Lee Ho Yun, Maas Mario, Marti-Bonmati Luis, Müller Henning, Obuchowski Nancy, Orlhac Fanny, Papanikolaou Nikolaos, Petrash Ekaterina, Pfaehler Elisabeth, Pinto Dos Santos Daniel, Ponsiglione Andrea, Sabater Sebastià, Sardanelli Francesco, Seeböck Philipp, Sijtsema Nanna M, Stanzione Arnaldo, Traverso Alberto, Ugga Lorenzo, Vallières Martin, van Dijk Lisanne V, van Griethuysen Joost J M, van Hamersvelt Robbert W, van Ooijen Peter, Vernuccio Federica, Wang Alan, Williams Stuart, Witowski Jan, Zhang Zhongyi, Zwanenburg Alex, Cuocolo Renato

机构信息

Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.

Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland.

出版信息

Insights Imaging. 2024 Jan 17;15(1):8. doi: 10.1186/s13244-023-01572-w.

Abstract

PURPOSE

To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies.

METHODS

We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated.

RESULT

In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community.

CONCLUSION

In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers.

CRITICAL RELEVANCE STATEMENT

A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning.

KEY POINTS

• A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

摘要

目的

提出一种新的质量评分工具——放射组学方法评分(METRICS),以评估和提高放射组学研究的质量。

方法

我们对一组国际专家进行了在线改良德尔菲研究。该研究分三个连续阶段进行:第1阶段,项目准备;第2阶段,欧洲医学影像信息学会审核组成员进行小组讨论,以确定待投票的项目;第3阶段,小组成员进行四轮改良德尔菲练习,以确定符合METRICS的项目及其权重。共识阈值为75%。根据专家小组意见得出的中位数排名以及基于排名总和转换为重要性得分,计算类别和项目权重。

结果

来自19个国家的59名小组成员参与了项目和类别的选择与排名。最终的METRICS工具包括9个类别中的30个项目。根据权重,这些类别按重要性降序排列为:研究设计、影像数据、图像处理与特征提取、指标与比较、测试、特征处理、建模准备、分割和开放科学。开发了一个网络应用程序和一个存储库,以简化METRICS评分的计算,并收集放射组学领域的反馈。

结论

在这项工作中,我们通过一个大型国际专家小组和改良的德尔菲协议,开发了一种用于评估放射组学研究方法质量的评分工具。凭借其涵盖方法学差异的条件格式,它为评估放射组学研究论文质量的关键方法学概念提供了一个构建良好的框架。

关键相关声明

一个质量评估工具——放射组学方法评分(METRICS),由一大群国际领域专家提供,方法透明,旨在评估和提高放射组学和机器学习的研究质量。

要点

• 开发了一种方法评分工具METRICS,用于评估放射组学研究的质量,有一个大型国际专家小组和改良的德尔菲协议。• 所提出的评分工具首次以透明的方法呈现了基于专家意见的类别和项目重要性权重。• METRICS考虑了不同的用例,从手工放射组学到完全基于深度学习的数据管道。• 开发了一个网络应用程序来帮助计算METRICS评分(https://metricsscore.github.io/metrics/METRICS.html ),并创建了一个存储库来收集放射组学领域的反馈(https://github.com/metricsscore/metrics )。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d09/10792137/66667cc17960/13244_2023_1572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验