Suppr超能文献

利用多期CT影像组学和临床放射学特征鉴别肾上腺嗜铬细胞瘤与大直径乏脂性腺瘤的联合列线图

Combined nomogram for differentiating adrenal pheochromocytoma from large-diameter lipid-poor adenoma using multiphase CT radiomics and clinico-radiological features.

作者信息

Shan Zujuan, Zhang Xinzhang, Zhang Yiwen, Wang Shuailong, Wang Junfeng, Shi Xin, Li Lin, Li Zhenhui, Yang Liuyang, Liu Hao, Li Wenliang, Yang Junfeng, Yang Liansheng

机构信息

Department of Urology, Honghe Hospital Affiliated to Kunming Medical University (South Yunnan Central Hospital of Yunnan Province), No. 1, Xiyuan Road, Gejiu City, Honghe, Yunnan, 661017, China.

The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650100, China.

出版信息

BMC Med Imaging. 2025 Aug 4;25(1):313. doi: 10.1186/s12880-025-01835-6.

Abstract

BACKGROUND AND OBJECTIVE

Adrenal incidentalomas (AIs) are predominantly adrenal adenomas (80%), with a smaller proportion (7%) being pheochromocytomas(PHEO). Adenomas are typically non-functional tumors managed through observation or medication, with some cases requiring surgical removal, which is generally safe. In contrast, PHEO secrete catecholamines, causing severe blood pressure fluctuations, making surgical resection the only treatment option. Without adequate preoperative preparation, perioperative mortality risk is significantly high.A specialized adrenal CT scanning protocol is recommended to differentiate between these tumor types. However, distinguishing patients with similar washout characteristics remains challenging, and concerns about efficiency, cost, and risk limit its feasibility. Recently, radiomics has demonstrated efficacy in identifying molecular-level differences in tumor cells, including adrenal tumors. This study develops a combined nomogram model, integrating key clinical-radiological and radiomic features from multiphase CT, to enhance accuracy in distinguishing pheochromocytoma from large-diameter lipid-poor adrenal adenoma (LP-AA).

METHODS

A retrospective analysis was conducted on 202 patients with pathologically confirmed adrenal PHEO and large-diameter LP-AA from three tertiary care centers. Key clinico-radiological and radiomics features were selected to construct models: a clinico-radiological model, a radiomics model, and a combined nomogram model for predicting these two tumor types. Model performance and robustness were evaluated using external validation, calibration curve analysis, machine learning techniques, and Delong's test. Additionally, the Hosmer-Lemeshow test, decision curve analysis, and five-fold cross-validation were employed to assess the clinical translational potential of the combined nomogram model.

RESULTS

All models demonstrated high diagnostic performance, with AUC values exceeding 0.8 across all cohorts, confirming their reliability. The combined nomogram model exhibited the highest diagnostic accuracy, with AUC values of 0.994, 0.979, and 0.945 for the training, validation, and external test cohorts, respectively. Notably, the unenhanced combined nomogram model was not significantly inferior to the three-phase combined nomogram model (p > 0.05 in the validation and test cohorts; p = 0.049 in the training cohort).

CONCLUSIONS

The combined nomogram model reliably distinguishes between PHEO and LP-AA, shows strong clinical translational potential, and may reduce the need for contrast-enhanced CT scans.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景与目的

肾上腺偶发瘤(AIs)主要为肾上腺腺瘤(80%),较小比例(7%)为嗜铬细胞瘤(PHEO)。腺瘤通常为无功能肿瘤,通过观察或药物治疗,部分病例需手术切除,一般较为安全。相比之下,PHEO分泌儿茶酚胺,导致严重血压波动,手术切除是唯一的治疗选择。术前未充分准备,围手术期死亡风险显著增高。推荐采用专门的肾上腺CT扫描方案来区分这些肿瘤类型。然而,区分具有相似洗脱特征的患者仍具有挑战性,且对效率、成本和风险的担忧限制了其可行性。近年来,放射组学已证明在识别肿瘤细胞分子水平差异方面具有有效性,包括肾上腺肿瘤。本研究开发了一种联合列线图模型,整合多期CT的关键临床放射学和放射组学特征,以提高区分嗜铬细胞瘤与大直径低脂肾上腺腺瘤(LP - AA)的准确性。

方法

对来自三个三级医疗中心的202例经病理证实的肾上腺PHEO和大直径LP - AA患者进行回顾性分析。选择关键临床放射学和放射组学特征构建模型:临床放射学模型、放射组学模型以及用于预测这两种肿瘤类型的联合列线图模型。使用外部验证、校准曲线分析、机器学习技术和德龙检验评估模型性能和稳健性。此外,采用Hosmer - Lemeshow检验、决策曲线分析和五折交叉验证来评估联合列线图模型的临床转化潜力。

结果

所有模型均显示出较高的诊断性能,所有队列的AUC值均超过0.8,证实了其可靠性。联合列线图模型表现出最高的诊断准确性,训练、验证和外部测试队列的AUC值分别为0.994、0.979和0.945。值得注意的是,平扫联合列线图模型与三期联合列线图模型相比无显著劣势(验证和测试队列中p > 0.05;训练队列中p = 0.049)。

结论

联合列线图模型能够可靠地区分PHEO和LP - AA,具有较强的临床转化潜力,且可能减少对比增强CT扫描的需求。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76d2/12323233/9cd56c6273b4/12880_2025_1835_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验