Suppr超能文献

相似文献

1
Sharing Data Is Essential for the Future of AI in Medical Imaging.
Radiol Artif Intell. 2024 Jan;6(1):e230337. doi: 10.1148/ryai.230337.
2
From code sharing to sharing of implementations: Advancing reproducible AI development for medical imaging through federated testing.
J Med Imaging Radiat Sci. 2024 Dec;55(4):101745. doi: 10.1016/j.jmir.2024.101745. Epub 2024 Aug 29.
3
The MAIDA initiative: establishing a framework for global medical-imaging data sharing.
Lancet Digit Health. 2024 Jan;6(1):e6-e8. doi: 10.1016/S2589-7500(23)00222-4. Epub 2023 Nov 15.
4
The critical need for an open medical imaging database in Japan: implications for global health and AI development.
Jpn J Radiol. 2025 Apr;43(4):537-541. doi: 10.1007/s11604-024-01716-y. Epub 2024 Dec 13.
5
Medical Image Sharing in Japan.
J Digit Imaging. 2022 Aug;35(4):772-784. doi: 10.1007/s10278-022-00675-y. Epub 2022 Aug 22.
6
An Open Science Approach to Artificial Intelligence in Healthcare.
Yearb Med Inform. 2019 Aug;28(1):47-51. doi: 10.1055/s-0039-1677898. Epub 2019 Apr 25.
7
Patient-controlled sharing of medical imaging data across unaffiliated healthcare organizations.
J Am Med Inform Assoc. 2013 Jan 1;20(1):157-63. doi: 10.1136/amiajnl-2012-001146. Epub 2012 Aug 11.
8
A Clinician's Guide to Sharing Data for AI in Ophthalmology.
Invest Ophthalmol Vis Sci. 2024 Jun 3;65(6):21. doi: 10.1167/iovs.65.6.21.
10
Open science--combining open data and open source software: medical image analysis with the Insight Toolkit.
Med Image Anal. 2005 Dec;9(6):503-6. doi: 10.1016/j.media.2005.04.008. Epub 2005 Sep 19.

引用本文的文献

1
Advancing MRI, together: open science in MR research.
MAGMA. 2025 Aug 20. doi: 10.1007/s10334-025-01286-8.
2
The Beacon Wiki: Mapping oncological information across the European Union.
BMC Med Inform Decis Mak. 2025 May 19;25(1):193. doi: 10.1186/s12911-025-03015-6.
4
Sex-Based Bias in Artificial Intelligence-Based Segmentation Models in Clinical Oncology.
Clin Oncol (R Coll Radiol). 2025 Mar;39:103758. doi: 10.1016/j.clon.2025.103758. Epub 2025 Jan 8.
5
The Multicentre Acute ischemic stroke imaGIng and Clinical data (MAGIC) repository: rationale and blueprint.
Front Neuroinform. 2025 Jan 7;18:1508161. doi: 10.3389/fninf.2024.1508161. eCollection 2024.
6
FastMRI Breast: A Publicly Available Radial k-Space Dataset of Breast Dynamic Contrast-enhanced MRI.
Radiol Artif Intell. 2025 Jan;7(1):e240345. doi: 10.1148/ryai.240345.
7
Bias in artificial intelligence for medical imaging: fundamentals, detection, avoidance, mitigation, challenges, ethics, and prospects.
Diagn Interv Radiol. 2025 Mar 3;31(2):75-88. doi: 10.4274/dir.2024.242854. Epub 2024 Jul 2.
9
Data Resources: Milestones and Building Blocks.
Radiol Artif Intell. 2023 Nov 29;5(6):e230418. doi: 10.1148/ryai.230418. eCollection 2023 Nov.

本文引用的文献

1
Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review.
IEEE Trans Med Imaging. 2024 Feb;43(2):846-859. doi: 10.1109/TMI.2023.3323215. Epub 2024 Feb 2.
2
Algorithmic fairness in artificial intelligence for medicine and healthcare.
Nat Biomed Eng. 2023 Jun;7(6):719-742. doi: 10.1038/s41551-023-01056-8. Epub 2023 Jun 28.
3
A guide to sharing open healthcare data under the General Data Protection Regulation.
Sci Data. 2023 Jun 24;10(1):404. doi: 10.1038/s41597-023-02256-2.
4
The road to the ISMRM OSIPI: A community-led initiative for reproducible perfusion MRI.
Magn Reson Med. 2024 May;91(5):1740-1742. doi: 10.1002/mrm.29736. Epub 2023 Jun 6.
6
RadBERT: Adapting Transformer-based Language Models to Radiology.
Radiol Artif Intell. 2022 Jun 15;4(4):e210258. doi: 10.1148/ryai.210258. eCollection 2022 Jul.
7
Machine learning for medical imaging: methodological failures and recommendations for the future.
NPJ Digit Med. 2022 Apr 12;5(1):48. doi: 10.1038/s41746-022-00592-y.
8
Implicit data crimes: Machine learning bias arising from misuse of public data.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2117203119. doi: 10.1073/pnas.2117203119. Epub 2022 Mar 21.
9
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations.
Nat Med. 2021 Dec;27(12):2176-2182. doi: 10.1038/s41591-021-01595-0. Epub 2021 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验