Suppr超能文献

M4Raw:一个用于低场 MRI 研究的多对比度、多重复、多通道 MRI 空(k)数据集。

M4Raw: A multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research.

机构信息

College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.

Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, China.

出版信息

Sci Data. 2023 May 10;10(1):264. doi: 10.1038/s41597-023-02181-4.

Abstract

Recently, low-field magnetic resonance imaging (MRI) has gained renewed interest to promote MRI accessibility and affordability worldwide. The presented M4Raw dataset aims to facilitate methodology development and reproducible research in this field. The dataset comprises multi-channel brain k-space data collected from 183 healthy volunteers using a 0.3 Tesla whole-body MRI system, and includes T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR) images with in-plane resolution of ~1.2 mm and through-plane resolution of 5 mm. Importantly, each contrast contains multiple repetitions, which can be used individually or to form multi-repetition averaged images. After excluding motion-corrupted data, the partitioned training and validation subsets contain 1024 and 240 volumes, respectively. To demonstrate the potential utility of this dataset, we trained deep learning models for image denoising and parallel imaging tasks and compared their performance with traditional reconstruction methods. This M4Raw dataset will be valuable for the development of advanced data-driven methods specifically for low-field MRI. It can also serve as a benchmark dataset for general MRI reconstruction algorithms.

摘要

最近,低磁场磁共振成像(MRI)重新引起了人们的兴趣,以促进全球范围内 MRI 的可及性和可负担性。本研究提出的 M4Raw 数据集旨在促进该领域的方法开发和可重复性研究。该数据集包含使用 0.3T 全身 MRI 系统从 183 名健康志愿者采集的多通道脑 k 空间数据,包括 T1 加权、T2 加权和液体衰减反转恢复(FLAIR)图像,平面分辨率约为 1.2mm,层间分辨率为 5mm。重要的是,每种对比剂都包含多个重复,可以单独使用或形成多次重复平均图像。排除运动伪影数据后,分割的训练和验证子集分别包含 1024 个和 240 个容积。为了展示该数据集的潜在应用价值,我们针对图像去噪和并行成像任务训练了深度学习模型,并将其性能与传统重建方法进行了比较。这个 M4Raw 数据集将对专门用于低磁场 MRI 的先进数据驱动方法的开发非常有价值。它也可以作为一般 MRI 重建算法的基准数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e99/10172399/c10eb1d87860/41597_2023_2181_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验