奥塔哥大学(University of Otago)通过单一惯性测量单元(IMU)和分层机器学习模型对老年人进行运动监测。
Otago Exercises Monitoring for Older Adults by a Single IMU and Hierarchical Machine Learning Models.
出版信息
IEEE Trans Neural Syst Rehabil Eng. 2024;32:462-471. doi: 10.1109/TNSRE.2024.3355299. Epub 2024 Jan 24.
Otago Exercise Program (OEP) is a rehabilitation program for older adults to improve frailty, sarcopenia, and balance. Accurate monitoring of patient involvement in OEP is challenging, as self-reports (diaries) are often unreliable. The development of wearable sensors and their use in Human Activity Recognition (HAR) systems has lead to a revolution in healthcare. However, the use of such HAR systems for OEP still shows limited performance. The objective of this study is to build an unobtrusive and accurate system to monitor OEP for older adults. Data was collected from 18 older adults wearing a single waist-mounted Inertial Measurement Unit (IMU). Two datasets were recorded, one in a laboratory setting, and one at the homes of the patients. A hierarchical system is proposed with two stages: 1) using a deep learning model to recognize whether the patients are performing OEP or activities of daily life (ADLs) using a 10-minute sliding window; 2) based on stage 1, using a 6-second sliding window to recognize the OEP sub-classes. Results showed that in stage 1, OEP could be recognized with window-wise f1-scores over 0.95 and Intersection-over-Union (IoU) f1-scores over 0.85 for both datasets. In stage 2, for the home scenario, four activities could be recognized with f1-scores over 0.8: ankle plantarflexors, abdominal muscles, knee bends, and sit-to-stand. These results showed the potential of monitoring the compliance of OEP using a single IMU in daily life. Also, some OEP sub-classes are possible to be recognized for further analysis.
奥塔哥运动计划(OEP)是一项针对老年人的康复计划,旨在改善虚弱、肌肉减少症和平衡能力。准确监测患者参与 OEP 的情况具有挑战性,因为自我报告(日记)往往不可靠。可穿戴传感器的发展及其在人体活动识别(HAR)系统中的应用,引发了医疗保健领域的一场革命。然而,此类 HAR 系统在 OEP 中的应用仍显示出有限的性能。本研究旨在构建一个非侵入性且准确的系统,以监测老年人的 OEP。数据来自 18 名佩戴单个腰部惯性测量单元(IMU)的老年人。记录了两个数据集,一个在实验室环境中,一个在患者家中。提出了一个分层系统,有两个阶段:1)使用深度学习模型,使用 10 分钟滑动窗口识别患者是在进行 OEP 还是日常生活活动(ADLs);2)基于阶段 1,使用 6 秒滑动窗口识别 OEP 子类。结果表明,在阶段 1 中,使用窗口 f1 分数超过 0.95 和交并比(IoU)f1 分数超过 0.85,可以识别 OEP。在阶段 2 中,对于家庭场景,可以识别出四个活动,其 f1 分数超过 0.8:踝关节跖屈肌、腹部肌肉、膝盖弯曲和坐立站起。这些结果表明,使用单个 IMU 在日常生活中监测 OEP 依从性具有潜力。此外,一些 OEP 子类也可以进行识别,以便进一步分析。