IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3434-3445. doi: 10.1109/TPAMI.2022.3174526. Epub 2023 Feb 3.
Unsupervised domain adaptation (UDA) has recently become an appealing research topic in visual recognition, since it exploits all accessible well-labeled source data to train a model with high generalization on target domain without any annotations. However, due to the significant domain discrepancy, the bottleneck for UDA is to learn effective domain-invariant feature representations. To fight off such an obstacle, we propose a novel cross-domain learning framework named Maximum Structural Generation Discrepancy (MSGD) to accurately estimate and mitigate domain shift via introducing an intermediate domain. First, the cross-domain topological structure is explored to propagate target samples to generate a novel intermediate domain paired with the specific source instances. The intermediate domain plays as the bridge to gradually reduce distribution divergence across source and target domains. Concretely, the similar category semantic across source and intermediate features tends to naturally conduct the class-level alignment on eliminating their domain shift. In terms of no target annotation, the domain-level alignment manner is suitable to narrow down the distance between intermediate and target domains. Moreover, to produce high-quality generative instances, we develop the class-driven collaborative translation (CDCT) module to generate class-consistent cross-domain samples in each mini-batch with the assistance of pseudo-labels. Extensive experimental analyses on five domain adaptation benchmarks demonstrate the effectiveness of our MSGD on solving UDA problem.
无监督领域自适应 (UDA) 最近成为视觉识别中一个引人注目的研究课题,因为它利用所有可访问的标记良好的源数据来训练模型,在没有任何注释的情况下在目标域上具有很高的泛化能力。然而,由于存在显著的领域差异,UDA 的瓶颈在于学习有效的领域不变特征表示。为了克服这一障碍,我们提出了一种名为最大结构生成差异 (MSGD) 的新的跨领域学习框架,通过引入中间领域来准确估计和减轻领域转移。首先,探索跨领域拓扑结构,将目标样本传播到生成一个新的中间域,并与特定的源实例配对。中间域充当桥梁,逐渐减少源域和目标域之间的分布差异。具体来说,源域和中间特征之间的相似类别语义倾向于自然地进行类别级对齐,以消除它们的领域转移。在没有目标注释的情况下,域级对齐方式适合缩小中间域和目标域之间的距离。此外,为了生成高质量的生成实例,我们开发了类驱动协同翻译 (CDCT) 模块,在每个小批量中借助伪标签生成类一致的跨域样本。在五个领域自适应基准上的广泛实验分析表明,我们的 MSGD 能够有效地解决 UDA 问题。