Suppr超能文献

基于 EEG 的运动想象分类中的数据对齐和最优传输的迁移学习。

Transfer learning with data alignment and optimal transport for EEG based motor imagery classification.

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.

Center for Drug Inspection of Zhejiang Province, Hangzhou 310018, People's Republic of China.

出版信息

J Neural Eng. 2024 Jan 31;21(1). doi: 10.1088/1741-2552/ad1f7a.

Abstract

. The non-stationarity of electroencephalogram (EEG) signals and the variability among different subjects present significant challenges in current Brain-Computer Interfaces (BCI) research, which requires a time-consuming specific calibration procedure to address. Transfer Learning (TL) offers a potential solution by leveraging data or models from one or more source domains to facilitate learning in the target domain, so as to address these challenges.. In this paper, a novel Multi-source domain Transfer Learning Fusion (MTLF) framework is proposed to address the calibration problem. Firstly, the method transforms the source domain data with the resting state segment data, in order to decrease the differences between the source domain and the target domain. Subsequently, feature extraction is performed using common spatial pattern. Finally, an improved TL classifier is employed to classify the target samples. Notably, this method does not require the label information of target domain samples, while concurrently reducing the calibration workload.. The proposed MTLF is assessed on Datasets 2a and 2b from the BCI Competition IV. Compared with other algorithms, our method performed relatively the best and achieved mean classification accuracy of 73.69% and 70.83% on Datasets 2a and 2b respectively.Experimental results demonstrate that the MTLF framework effectively reduces the discrepancy between the source and target domains and acquires better classification performance on two motor imagery datasets.

摘要

. 脑电信号的非平稳性和不同个体之间的可变性在当前的脑机接口 (BCI) 研究中带来了重大挑战,这需要进行耗时的特定校准程序来解决。迁移学习 (TL) 通过利用一个或多个源域的数据或模型来促进目标域的学习,提供了一种潜在的解决方案,从而解决这些挑战。. 在本文中,提出了一种新的多源域迁移学习融合 (MTLF) 框架来解决校准问题。首先,该方法使用静息段数据对源域数据进行转换,以减小源域和目标域之间的差异。随后,使用共空间模式进行特征提取。最后,采用改进的 TL 分类器对目标样本进行分类。值得注意的是,该方法不需要目标域样本的标签信息,同时减少了校准工作量。. 所提出的 MTLF 在 BCI 竞赛 IV 的数据集 2a 和 2b 上进行了评估。与其他算法相比,我们的方法在数据集 2a 和 2b 上的平均分类准确率分别为 73.69%和 70.83%,表现相对最好。实验结果表明,MTLF 框架有效地减小了源域和目标域之间的差异,并在两个运动想象数据集上获得了更好的分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验