Xie Chengqiang, Wang Li, Yang Jiafeng, Guo Jiaying
School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China.
School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China.
J Neurosci Methods. 2025 Aug;420:110483. doi: 10.1016/j.jneumeth.2025.110483. Epub 2025 May 9.
Brain-computer interface (BCI) facilitates the connection between human brain and computer, enabling individuals to control external devices indirectly through cognitive processes. Although it has great development prospects, the significant difference in EEG signals among individuals hinders users from further utilizing the BCI system.
Addressing this difference and improving BCI classification accuracy remain key challenges. In this paper, we propose a transfer learning model based on deep learning to transfer the data distribution from the source domain to the target domain, named a subject transfer neural network combining the Generator with Euclidean alignment (ST-GENN). It consists of three parts: 1) Align the original EEG signals in the Euclidean space; 2) Send the aligned data to the Generator to obtain the transferred features; 3) Utilize the Convolution-attention-temporal (CAT) classifier to classify the transferred features.
The model is validated on BCI competition IV 2a, BCI competition IV 2b and SHU datasets to evaluate its classification performance, and the results are 82.85 %, 86.28 % and 67.2 % for the three datasets, respectively.
The results have been shown to be robust to subject variability, with the average accuracy of the proposed method outperforming baseline algorithms by ranging from 2.03 % to 15.43 % on the 2a dataset, from 0.86 % to 10.16 % on the 2b dataset and from 3.3 % to 17.9 % on the SHU dataset.
The advantage of our model lies in its ability to effectively transfer the experience and knowledge of the source domain data to the target domain, thus bridging the gap between them. Our method can improve the practicability of MI-BCI systems.
脑机接口(BCI)促进了人脑与计算机之间的连接,使个体能够通过认知过程间接控制外部设备。尽管它具有巨大的发展前景,但个体之间脑电图(EEG)信号的显著差异阻碍了用户进一步利用BCI系统。
解决这一差异并提高BCI分类准确率仍然是关键挑战。在本文中,我们提出了一种基于深度学习的迁移学习模型,用于将数据分布从源域转移到目标域,名为结合生成器与欧几里得对齐的主题迁移神经网络(ST-GENN)。它由三个部分组成:1)在欧几里得空间中对齐原始EEG信号;2)将对齐后的数据发送到生成器以获得迁移特征;3)利用卷积-注意力-时间(CAT)分类器对迁移特征进行分类。
该模型在BCI竞赛IV 2a、BCI竞赛IV 2b和上海大学(SHU)数据集上进行了验证,以评估其分类性能,三个数据集的结果分别为82.85%、86.28%和67.2%。
结果表明,该方法对个体差异具有鲁棒性,在2a数据集上,所提方法的平均准确率比基线算法高出2.03%至15.43%;在2b数据集上高出0.86%至10.16%;在SHU数据集上高出3.3%至17.9%。
我们模型的优势在于能够有效地将源域数据的经验和知识转移到目标域,从而弥合它们之间的差距。我们的方法可以提高运动想象脑机接口(MI-BCI)系统的实用性。