Suppr超能文献

基于歌词的深度学习算法(LYDIA)识别与酒精相关词汇的开发。

Development of the lyrics-based deep learning algorithm for identifying alcohol-related words (LYDIA).

机构信息

Centre for Alcohol Policy Research, La Trobe University, Melbourne, Australia.

Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia.

出版信息

Alcohol Alcohol. 2024 Jan 17;59(2). doi: 10.1093/alcalc/agad088.

Abstract

BACKGROUND

Music is an integral part of our lives and is often played in public places like restaurants. People exposed to music that contained alcohol-related lyrics in a bar scenario consumed significantly more alcohol than those exposed to music with less alcohol-related lyrics. Existing methods to quantify alcohol exposure in song lyrics have used manual annotation that is burdensome and time intensive. In this paper, we aim to build a deep learning algorithm (LYDIA) that can automatically detect and identify alcohol exposure and its context in song lyrics.

METHODS

We identified 673 potentially alcohol-related words including brand names, urban slang, and beverage names. We collected all the lyrics from the Billboard's top-100 songs from 1959 to 2020 (N = 6110). We developed an annotation tool to annotate both the alcohol-relation of the word (alcohol, non-alcohol, or unsure) and the context (positive, negative, or neutral) of the word in the song lyrics.

RESULTS

LYDIA achieved an accuracy of 86.6% in identifying the alcohol-relation of the word, and 72.9% in identifying its context. LYDIA can distinguish with an accuracy of 97.24% between the words that have positive and negative relation to alcohol; and with an accuracy of 98.37% between the positive and negative context.

CONCLUSION

LYDIA can automatically identify alcohol exposure and its context in song lyrics, which will allow for the swift analysis of future lyrics and can be used to help raise awareness about the amount of alcohol in music. Highlights Developed a deep learning algorithm (LYDIA) to identify alcohol words in songs. LYDIA achieved an accuracy of 86.6% in identifying alcohol-relation of the words. LYDIA's accuracy in identifying positive, negative, or neutral context was 72.9%. LYDIA can automatically provide evidence of alcohol in millions of songs. This can raise awareness of harms of listening to songs with alcohol words.

摘要

背景

音乐是我们生活中不可或缺的一部分,经常在餐厅等公共场所播放。在酒吧场景中,人们接触到含有酒精相关歌词的音乐时,比接触到酒精相关歌词较少的音乐时会摄入更多的酒精。现有的歌词中酒精暴露定量方法使用了繁琐且耗时的手动注释。在本文中,我们旨在构建一种深度学习算法(LYDIA),该算法可以自动检测和识别歌曲歌词中的酒精暴露及其语境。

方法

我们确定了 673 个可能与酒精有关的词,包括品牌名称、城市俚语和饮料名称。我们收集了 1959 年至 2020 年 Billboard 前 100 首歌曲的所有歌词(N=6110)。我们开发了一种注释工具,用于注释歌词中单词的酒精相关性(酒精、非酒精或不确定)及其语境(积极、消极或中性)。

结果

LYDIA 在识别单词的酒精相关性方面的准确率为 86.6%,在识别其语境方面的准确率为 72.9%。LYDIA 可以以 97.24%的准确率区分与酒精有正相关和负相关的单词;以 98.37%的准确率区分积极和消极的语境。

结论

LYDIA 可以自动识别歌曲歌词中的酒精暴露及其语境,这将允许对未来的歌词进行快速分析,并可用于帮助提高对音乐中酒精含量的认识。

亮点

开发了一种深度学习算法(LYDIA)来识别歌曲中的酒精词。

LYDIA 在识别单词的酒精相关性方面的准确率为 86.6%。

LYDIA 在识别积极、消极或中性语境方面的准确率为 72.9%。

LYDIA 可以自动为数百万首歌曲提供酒精证据。这可以提高人们对听含有酒精单词的歌曲的危害的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e6/10794165/130973a3a336/agad088f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验