Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510006, Guangdong, People's Republic of China.
Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
Cancer Immunol Immunother. 2024 Jan 18;73(1):14. doi: 10.1007/s00262-023-03626-w.
Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort (n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein-Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan-Meier (K-M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19 B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K-M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.
鼻咽癌患者免疫检查点抑制剂(ICIs)反应的基于血液的生物标志物缺乏,因此有必要确定生物标志物,以选择最有可能或最不可能从 ICI 中获益的 NPC 患者。在训练队列(n=130)中,在接受 ICI 治疗之前确定了淋巴细胞亚群、生化指标和血常规的绝对值。然后,采用最小绝对收缩和选择算子(Lasso)Cox 回归分析构建预测模型。使用一致性指数(C-index)比较了预测模型与 TNM 分期、治疗和 Epstein-Barr 病毒(EBV)DNA 的性能。通过 Kaplan-Meier(K-M)生存曲线估计无进展生存期(PFS)。其他 63 名患者用于验证队列。由组织学亚型、CD19 B 细胞、自然杀伤(NK)细胞、调节性 T 细胞、红细胞(RBC)、天冬氨酸转氨酶/丙氨酸转氨酶比值(SLR)、载脂蛋白 B(Apo B)和乳酸脱氢酶(LDH)组成的新型模型。该模型在训练队列中的 C 指数为 0.784,在验证队列中的 C 指数为 0.735。K-M 生存曲线显示,高风险评分的患者与低风险组相比,PFS 更短。对于预测免疫治疗反应,该模型的受试者工作特征(ROC)、决策曲线分析(DCA)、净重新分类改善指数(NRI)和综合判别改善指数(IDI)均显示出比 EBV DNA 更好的预测能力。在这项研究中,我们构建了一种用于预测 NPC 患者预后和免疫治疗反应的新模型,这可能为选择那些可能从抗 PD-1 治疗中获得持久临床获益的患者提供临床帮助。