文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Neuroadaptive Training fNIRS in Flight Simulators.

作者信息

Mark Jesse A, Kraft Amanda E, Ziegler Matthias D, Ayaz Hasan

机构信息

School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, United States.

Advanced Technology Laboratories, Lockheed Martin, Arlington, VA, United States.

出版信息

Front Neuroergon. 2022 Mar 30;3:820523. doi: 10.3389/fnrgo.2022.820523. eCollection 2022.


DOI:10.3389/fnrgo.2022.820523
PMID:38236486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10790906/
Abstract

Training to master a new skill often takes a lot of time, effort, and financial resources, particularly when the desired skill is complex, time sensitive, or high pressure where lives may be at risk. Professions such as aircraft pilots, surgeons, and other mission-critical operators that fall under this umbrella require extensive domain-specific dedicated training to enable learners to meet real-world demands. In this study, we describe a novel neuroadaptive training protocol to enhance learning speed and efficiency using a neuroimaging-based cognitive workload measurement system in a flight simulator. We used functional near-infrared spectroscopy (fNIRS), which is a wearable, mobile, non-invasive neuroimaging modality that can capture localized hemodynamic response and has been used extensively to monitor the anterior prefrontal cortex to estimate cognitive workload. The training protocol included four sessions over 2 weeks and utilized realistic piloting tasks with up to nine levels of difficulty. Learners started at the lowest level and their progress adapted based on either behavioral performance and fNIRS measures combined (neuroadaptive) or performance measures alone (control). Participants in the neuroadaptive group were found to have significantly more efficient training, reaching higher levels of difficulty or significantly improved performance depending on the task, and showing consistent patterns of hemodynamic-derived workload in the dorsolateral prefrontal cortex. The results of this study suggest that a neuroadaptive personalized training protocol using non-invasive neuroimaging is able to enhance learning of new tasks. Finally, we outline here potential avenues for further optimization of this fNIRS based neuroadaptive training approach. As fNIRS mobile neuroimaging is becoming more practical and accessible, the approaches developed here can be applied in the real world in scale.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/96d09b1ae03e/fnrgo-03-820523-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/8fb06a10c621/fnrgo-03-820523-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/82982cfa648b/fnrgo-03-820523-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/f77cb1af4908/fnrgo-03-820523-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/0b170ad7439d/fnrgo-03-820523-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/b85b7a6fdb66/fnrgo-03-820523-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/9fd33973355b/fnrgo-03-820523-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/3617e78baf8a/fnrgo-03-820523-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/ce9dadc34184/fnrgo-03-820523-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/eec952485ab5/fnrgo-03-820523-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/57570b7c2902/fnrgo-03-820523-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/46bc9c9a4be8/fnrgo-03-820523-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/a231d3191519/fnrgo-03-820523-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/97b584eebd83/fnrgo-03-820523-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/f1a21869168a/fnrgo-03-820523-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/96d09b1ae03e/fnrgo-03-820523-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/8fb06a10c621/fnrgo-03-820523-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/82982cfa648b/fnrgo-03-820523-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/f77cb1af4908/fnrgo-03-820523-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/0b170ad7439d/fnrgo-03-820523-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/b85b7a6fdb66/fnrgo-03-820523-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/9fd33973355b/fnrgo-03-820523-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/3617e78baf8a/fnrgo-03-820523-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/ce9dadc34184/fnrgo-03-820523-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/eec952485ab5/fnrgo-03-820523-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/57570b7c2902/fnrgo-03-820523-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/46bc9c9a4be8/fnrgo-03-820523-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/a231d3191519/fnrgo-03-820523-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/97b584eebd83/fnrgo-03-820523-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/f1a21869168a/fnrgo-03-820523-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043c/10790906/96d09b1ae03e/fnrgo-03-820523-g0015.jpg

相似文献

[1]
Neuroadaptive Training fNIRS in Flight Simulators.

Front Neuroergon. 2022-3-30

[2]
Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS.

Sci Rep. 2017-7-12

[3]
Mental workload assessment by monitoring brain, heart, and eye with six biomedical modalities during six cognitive tasks.

Front Neuroergon. 2024-3-12

[4]
Influences of age, mental workload, and flight experience on cognitive performance and prefrontal activity in private pilots: a fNIRS study.

Sci Rep. 2019-5-22

[5]
Optical neuroimaging and neurostimulation in surgical training and assessment: A state-of-the-art review.

Front Neuroergon. 2023-3-20

[6]
vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI.

Front Hum Neurosci. 2018-5-17

[7]
Individual differences in skill acquisition and transfer assessed by dual task training performance and brain activity.

Brain Inform. 2022-4-2

[8]
How a pilot's brain copes with stress and mental load? Insights from the executive control network.

Behav Brain Res. 2024-1-5

[9]
K-Means Clustering Machine Learning Approach Reveals Groups of Homogeneous Individuals With Unique Brain Activation, Task, and Performance Dynamics Using fNIRS.

IEEE Trans Neural Syst Rehabil Eng. 2023

[10]
Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development.

Front Hum Neurosci. 2013-12-18

引用本文的文献

[1]
Wearable Wireless Functional Near-Infrared Spectroscopy System for Cognitive Activity Monitoring.

Biosensors (Basel). 2025-2-6

[2]
Cognitive Effort during Visuospatial Problem Solving in Physical Real World, on Computer Screen, and in Virtual Reality.

Sensors (Basel). 2024-2-2

[3]
Simultaneous fMRI and tDCS for Enhancing Training of Flight Tasks.

Brain Sci. 2023-7-3

[4]
Optical imaging and spectroscopy for the study of the human brain: status report.

Neurophotonics. 2022-8

本文引用的文献

[1]
Influences of age, mental workload, and flight experience on cognitive performance and prefrontal activity in private pilots: a fNIRS study.

Sci Rep. 2019-5-22

[2]
Robotic Surgery Improves Technical Performance and Enhances Prefrontal Activation During High Temporal Demand.

Ann Biomed Eng. 2018-6-4

[3]
vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-BCI.

Front Hum Neurosci. 2018-5-17

[4]
Air Medical Simulation Training: A Retrospective Review of Cost and Effectiveness.

Air Med J. 2018

[5]
Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity.

Proc Natl Acad Sci U S A. 2016-12-27

[6]
Neural and psychophysiological correlates of human performance under stress and high mental workload.

Biol Psychol. 2016-12

[7]
Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy.

Front Hum Neurosci. 2016-5-18

[8]
Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study.

PLoS One. 2016-5-26

[9]
Transcranial Direct Current Stimulation Modulates Neuronal Activity and Learning in Pilot Training.

Front Hum Neurosci. 2016-2-9

[10]
fNIRS-based brain-computer interfaces: a review.

Front Hum Neurosci. 2015-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索