School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
Center of Mathematics Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-405, Brazil.
Sensors (Basel). 2024 Feb 2;24(3):977. doi: 10.3390/s24030977.
Spatial cognition plays a crucial role in academic achievement, particularly in science, technology, engineering, and mathematics (STEM) domains. Immersive virtual environments (VRs) have the growing potential to reduce cognitive load and improve spatial reasoning. However, traditional methods struggle to assess the mental effort required for visuospatial processes due to the difficulty in verbalizing actions and other limitations in self-reported evaluations. In this neuroergonomics study, we aimed to capture the neural activity associated with cognitive workload during visuospatial tasks and evaluate the impact of the visualization medium on visuospatial task performance. We utilized functional near-infrared spectroscopy (fNIRS) wearable neuroimaging to assess cognitive effort during spatial-reasoning-based problem-solving and compared a VR, a computer screen, and a physical real-world task presentation. Our results reveal a higher neural efficiency in the prefrontal cortex (PFC) during 3D geometry puzzles in VR settings compared to the settings in the physical world and on the computer screen. VR appears to reduce the visuospatial task load by facilitating spatial visualization and providing visual cues. This makes it a valuable tool for spatial cognition training, especially for beginners. Additionally, our multimodal approach allows for progressively increasing task complexity, maintaining a challenge throughout training. This study underscores the potential of VR in developing spatial skills and highlights the value of comparing brain data and human interaction across different training settings.
空间认知在学业成就中起着至关重要的作用,尤其是在科学、技术、工程和数学(STEM)领域。沉浸式虚拟环境(VR)具有降低认知负荷和提高空间推理能力的巨大潜力。然而,由于难以口头表达动作以及自我报告评估中的其他限制,传统方法难以评估空间处理所需的心理努力。在这项神经工效学研究中,我们旨在捕捉视觉空间任务期间与认知工作量相关的神经活动,并评估可视化媒介对视觉空间任务表现的影响。我们利用功能性近红外光谱(fNIRS)可穿戴神经成像技术,评估基于空间推理的解决问题过程中的认知努力,并比较了 VR、计算机屏幕和物理真实世界任务呈现。我们的结果表明,在 VR 设置中进行 3D 几何拼图时,前额叶皮层(PFC)的神经效率更高,与物理世界和计算机屏幕的设置相比。VR 似乎通过促进空间可视化和提供视觉提示来减轻视觉空间任务的负担。这使其成为空间认知训练的有价值工具,尤其是对于初学者。此外,我们的多模态方法允许逐步增加任务复杂性,在整个训练过程中保持挑战。这项研究强调了 VR 在发展空间技能方面的潜力,并突出了比较不同训练环境下的大脑数据和人机交互的价值。