Sun Yang, Mendelev Mikhail I, Zhang Feng, Liu Xun, Da Bo, Wang Cai-Zhuang, Wentzcovitch Renata M, Ho Kai-Ming
Department of Physics, Xiamen University, Xiamen 361005, China.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2316477121. doi: 10.1073/pnas.2316477121. Epub 2024 Jan 18.
Ni is the second most abundant element in the Earth's core. Yet, its effects on the inner core's structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe's melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe's crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.
镍是地核中含量第二丰富的元素。然而,由于其与铁在电子和尺寸上的相似性,它对内核结构和形成过程的影响通常被忽视。通过从头算分子动力学模拟,我们发现,在内核压力下,温度高于铁的熔点时,体心立方相能在液态镍中自发结晶。在323至360吉帕的压力下,镍的熔点比铁高700至800开尔文。铁和镍的六方密堆积、体心立方和液相关系有所不同。在高温和内核压力下,镍可以是铁的体心立方稳定剂。少量的镍可以加速铁在核心压力下的结晶。这些结果表明,镍可能会对固态内核的结构和形成过程产生重大影响。