Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA; email:
Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA.
Annu Rev Biophys. 2024 Jul;53(1):169-191. doi: 10.1146/annurev-biophys-030822-032904. Epub 2024 Jun 28.
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
许多 DNA 结合蛋白在 DNA 上或改变 DNA 底物的物理构象以控制其代谢时会经历动态组装、易位和构象变化。由于单分子荧光和力基技术的出现,现在可以直接观察到这些通常是蛋白质功能核心的活动。特别是,荧光检测和力操纵的集成实现了对蛋白质-DNA 相互作用的多维测量,并为协调细胞生命的生物分子过程提供了前所未有的机制见解。在这篇综述中,我们首先介绍了为单分子相关力和荧光显微镜开发的不同实验几何形状,重点介绍了作为操纵技术的光学镊子。然后,我们描述了这些集成平台在 DNA 和染色质上成像蛋白质动力学的用途,以及它们在生成复杂 DNA 构象和揭示依赖力的蛋白质行为方面的独特能力。最后,我们对这个新兴研究领域的未来方向提出了看法。