Wentz Jacqueline, Cameron Jeffrey C, Bortz David M
Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309 USA.
Department of Biochemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309-0526 USA.
SIAM J Matrix Anal Appl. 2022 Sep;43(3):1109-1147. doi: 10.1137/21m1418927. Epub 2022 Jul 13.
We present the analytical singular value decomposition of the stoichiometry matrix for a spatially discrete reaction-diffusion system. The motivation for this work is to develop a matrix decomposition that can reveal hidden spatial flux patterns of chemical reactions. We consider a 1D domain with two subregions sharing a single common boundary. Each of the subregions is further partitioned into a finite number of compartments. Chemical reactions can occur within a compartment, whereas diffusion is represented as movement between adjacent compartments. Inspired by biology, we study both (1) the case where the reactions on each side of the boundary are different and only certain species diffuse across the boundary and (2) the case where reactions and diffusion are spatially homogeneous. We write the stoichiometry matrix for these two classes of systems using a Kronecker product formulation. For the first scenario, we apply linear perturbation theory to derive an approximate singular value decomposition in the limit as diffusion becomes much faster than reactions. For the second scenario, we derive an exact analytical singular value decomposition for all relative diffusion and reaction time scales. By writing the stoichiometry matrix using Kronecker products, we show that the singular vectors and values can also be written concisely using Kronecker products. Ultimately, we find that the singular value decomposition of the reaction-diffusion stoichiometry matrix depends on the singular value decompositions of smaller matrices. These smaller matrices represent modified versions of the reaction-only stoichiometry matrices and the analytically known diffusion-only stoichiometry matrix. Lastly, we present the singular value decomposition of the model for the Calvin cycle in cyanobacteria and demonstrate the accuracy of our formulation. The MATLAB code, available at www.github.com/MathBioCU/ReacDiffStoicSVD, provides routines for efficiently calculating the SVD for a given reaction network on a 1D spatial domain.
我们给出了空间离散反应扩散系统化学计量矩阵的解析奇异值分解。开展这项工作的动机是开发一种矩阵分解方法,以揭示化学反应隐藏的空间通量模式。我们考虑一个具有两个子区域且共享单个公共边界的一维区域。每个子区域进一步划分为有限数量的隔室。化学反应可在一个隔室内发生,而扩散表示为相邻隔室之间的移动。受生物学启发,我们研究了两种情况:(1)边界两侧反应不同且只有某些物种能跨边界扩散的情况,以及(2)反应和扩散在空间上均匀的情况。我们使用克罗内克积公式来写出这两类系统的化学计量矩阵。对于第一种情况,我们应用线性微扰理论,在扩散比反应快得多的极限情况下导出近似奇异值分解。对于第二种情况,我们针对所有相对扩散和反应时间尺度导出精确的解析奇异值分解。通过用克罗内克积写出化学计量矩阵,我们表明奇异向量和奇异值也可以用克罗内克积简洁地表示。最终,我们发现反应扩散化学计量矩阵的奇异值分解取决于较小矩阵的奇异值分解。这些较小矩阵表示仅反应化学计量矩阵的修改版本以及解析已知的仅扩散化学计量矩阵。最后,我们给出了蓝藻卡尔文循环模型的奇异值分解,并证明了我们公式的准确性。可在www.github.com/MathBioCU/ReacDiffStoicSVD获取的MATLAB代码提供了在一维空间域上为给定反应网络高效计算奇异值分解的例程。