Suppr超能文献

基于沸石咪唑酯骨架衍生的纳米纤维网络中的铂钴作为低铂负载的稳定氧还原电催化剂

Zeolitic Imidazolate Framework-Derived Pt-Co in Nanofibrous Networks as Stable Oxygen Reduction Electrocatalysts with Low Pt Loading.

作者信息

Jiang Tao, Im Han Seo, Seo Daye, Dou Yibo, Park Sunghak, Lim Sung Yul, Shao Jing, Zhang Wenjing

机构信息

Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby 2800, Denmark.

Department of Chemistry, College of Science, Kyung Hee University, Seoul 02447, Korea.

出版信息

ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5803-5812. doi: 10.1021/acsami.3c15818. Epub 2024 Jan 19.

Abstract

Proton-exchange membrane fuel cell technology is a key component in the future zero-carbon energy system, generating power from carbon-free fuels, such as green hydrogen. However, the high Pt loading in conventional fuel cell electrodes to maintain electrocatalytic activity and durability, especially on the cathode for oxygen reduction, is the Achilles heel for the worldwide deployment of fuel cell technologies. To minimize Pt consumption for oxygen reduction, we synthesized Pt-Co-based electrocatalysts with meticulous structuring from micrometer to the atomic scale based on reaction pathways. The resulting Pt-Co-based electrocatalysts contain only 1.9 wt% Pt, which is 20 times lower than the conventional Pt-C catalysts for fuel cells. By utilizing electrospinning and in situ synthesis, we anchored three-dimensionally structured zeolitic imidazolate frameworks on continuously connected nanofibrous electrospun mats. The Pt-Co@Pt-free nanowire (PC@PFN) electrocatalysts contain Pt-Co nanoparticles (NPs) and non-Pt elements, Co-containing sites comprising NPs, nanoclusters, and N-coordinated Co single atoms. Despite the ultralow Pt loading in PC@PFN, the mass activity exceeds the U.S. Department of Energy 2025 target by 2.8 times and retains 85.5% of the initial activity after 80,000 durability test cycles, possibly owing to synergistic reaction pathways between Pt and non-Pt sites.

摘要

质子交换膜燃料电池技术是未来零碳能源系统的关键组成部分,可利用无碳燃料(如绿色氢气)发电。然而,传统燃料电池电极中为维持电催化活性和耐久性而采用的高铂负载量,尤其是在用于氧还原的阴极上,是燃料电池技术在全球范围内推广的致命弱点。为了将氧还原的铂消耗量降至最低,我们基于反应路径,从微米尺度到原子尺度精心构建了铂钴基电催化剂。所得的铂钴基电催化剂仅含1.9 wt%的铂,这比传统的燃料电池铂碳催化剂低20倍。通过静电纺丝和原位合成,我们将三维结构的沸石咪唑酯骨架锚定在连续连接的纳米纤维静电纺丝垫上。铂钴@无铂纳米线(PC@PFN)电催化剂包含铂钴纳米颗粒(NPs)和非铂元素,含钴位点包括纳米颗粒、纳米团簇和氮配位的钴单原子。尽管PC@PFN中的铂负载量极低,但其质量活性超过了美国能源部2025年的目标2.8倍,并且在经过80,000次耐久性测试循环后仍保留了初始活性的85.5%,这可能归因于铂和非铂位点之间的协同反应路径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验