Suppr超能文献

使用来自不同酶和水解程度的感官、荧光光谱和色谱数据构建的大豆分离蛋白水解物苦味预测模型的比较。

Comparison of prediction models for soy protein isolate hydrolysates bitterness built using sensory, spectrofluorometric and chromatographic data from varying enzymes and degree of hydrolysis.

作者信息

Liu Dandan, Raynaldo Fredy Agil, Dabbour Mokhtar, Zhang Xueli, Chen Zhongyuan, Ding Qingzhi, Luo Lin, Ma Haile

机构信息

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China.

School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China; College of Biosystems Engineering and Food Sciences, Zhejiang University, Hangzhou, People's Republic of China.

出版信息

Food Chem. 2024 Jun 1;442:138428. doi: 10.1016/j.foodchem.2024.138428. Epub 2024 Jan 13.

Abstract

The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.

摘要

研究了使用五种蛋白酶在不同水解度(DH)下制备的大豆分离蛋白水解产物的苦味及其与物理化学性质(即表面疏水性(H)、相对疏水性(RH)和分子量(MW))的关系,并利用机器学习进行预测建模。从感官分析中收集苦味评分并将其作为目标,而将物理化学性质作为特征。建模包括使用局部离群因子进行数据预处理;使用支持向量机、线性回归、自适应提升和K近邻算法进行模型开发;以及通过10倍分层交叉验证进行性能评估。结果表明,碱性蛋白酶水解产物苦味最强,其次是胃蛋白酶、风味酶、木瓜蛋白酶和菠萝蛋白酶。受每种蛋白酶差异的影响,在物理化学性质之间发现了独特的相关性结果。在这些特征中,RH-MW的组合适合各种分类模型,并产生了最佳的预测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验