Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
Biomacromolecules. 2024 Feb 12;25(2):1340-1350. doi: 10.1021/acs.biomac.3c01405. Epub 2024 Jan 19.
The ability to fine-tune the volume phase transition temperature (VPTT) of thermoresponsive nanoparticles is essential to their successful application in drug delivery. The rational design of these materials is limited by our understanding of the impact that nanoparticle-protein interactions have on their thermoresponsive behavior. In this work, we demonstrate how the formation of protein corona impacts the transition temperature values of acrylamide-based nanogels and their reversibility characteristics, in the presence of lysozyme, given its relevance for the ocular and intranasal administration route. Nanogels were synthesized with -isopropylacrylamide or --propylacrylamide as backbone monomers, methylenebis(acrylamide) (2.5-20 molar %) as a cross-linker, and functionalized with negatively charged monomers 2-acrylamido-2-methylpropanesulfonic acid, -acryloyl-l-proline, or acrylic acid; characterization showed comparable particle diameter (.10 nm), but formulation-dependent thermoresponsive properties, in the range 28-54 °C. Lysozyme was shown to form a complex with the negatively charged nanogels, lowering their VPTT values; the hydrophilic nature of the charged comonomer controlled the drop in VPTT upon complex formation, while matrix rigidity only had a small, yet significant effect. The cross-linker content was found to play a major role in determining the reversibility of the temperature-dependent transition of the complexes, with only 20 molar % cross-linked-nanogels displaying a fully reversible transition. These results demonstrate the importance of evaluating protein corona formation in the development of drug delivery systems based on thermoresponsive nanoparticles.
精细调节温敏纳米粒子的体积相转变温度(VPTT)对于它们在药物输送中的成功应用至关重要。这些材料的合理设计受到我们对纳米粒子-蛋白质相互作用对其温敏行为影响的理解的限制。在这项工作中,我们展示了在溶菌酶存在下,蛋白质冠的形成如何影响丙烯酰胺基纳米凝胶的转变温度值及其可逆性特征,鉴于其与眼部和鼻腔给药途径的相关性。纳米凝胶是由 -异丙基丙烯酰胺或 --丙基丙烯酰胺作为主链单体、亚甲基双(丙烯酰胺)(2.5-20 摩尔%)作为交联剂合成的,并通过带负电荷的单体 2-丙烯酰胺基-2-甲基丙磺酸、-丙烯酰基-L-脯氨酸或丙烯酸进行功能化;表征显示出相当的粒径(.10nm),但取决于配方的温敏性能,范围在 28-54°C。溶菌酶被证明与带负电荷的纳米凝胶形成复合物,降低了它们的 VPTT 值;带电荷共聚单体的亲水性控制了复合物形成时 VPTT 的下降,而基质刚性只有很小但却显著的影响。交联剂含量被发现对决定复合物温度依赖性转变的可逆性起着重要作用,只有 20 摩尔%交联纳米凝胶显示出完全可逆的转变。这些结果表明,在开发基于温敏纳米粒子的药物输送系统时,评估蛋白质冠形成的重要性。