Suppr超能文献

三角形微通道中球形和扁球形颗粒的惯性迁移

Inertial migration of spherical and oblate particles in a triangular microchannel.

作者信息

Xiong Junqi, Liu Xuechao, Feng Huiyong, Huang Haibo

机构信息

Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

出版信息

Phys Rev E. 2023 Dec;108(6-2):065105. doi: 10.1103/PhysRevE.108.065105.

Abstract

The. inertial migration of both spherical and oblate particles within an equilateral triangular channel is studied numerically. Our study primarily focuses on the effects of fluid inertia, quantified by the Reynolds number (Re) and particle size (β). Our observations reveal two distinct equilibrium positions: the corner equilibrium position (CEP) is situated along the angle bisector near the corner, while the face equilibrium position (FEP) is located on a segment of the line perpendicular from the triangle's center to one of its sides. Spherical particles with varying initial positions predominantly reach the FEP. For oblate particles initially positioned along the angle bisector with a specific orientation, meaning the particle's evolution axis is inside the plane bisecting the angle, they will migrate along the angle bisector to reach the CEP while rotating in the tumbling mode. Conversely, for particles with different initial orientations and positions, they will employ the log-rolling mode to reach the FEP. Notably, we identify a dual-stage particle migration process to the FEP, with trajectories converging to an equilibrium manifold, which bears a resemblance to the cross section of the channel. To further illustrate the transition between FEP and CEP under general initial conditions, except for those along the angle bisector, we construct a phase diagram in the (Re, β) parameter space. This transition is often triggered by the size of larger particles (as the FEP cannot accommodate them) or the influence of inertia for smaller particles. For the FEP, especially for medium- or small-size particles, we notice an initial outward movement of the FEP from the center of the cross section as Re increases, followed by a return towards the center. This behavior results from the interplay of three forces acting on the particle. This research holds potential implications for the design of microfluidic devices, offering insights into the behavior of particles within equilateral triangular channels.

摘要

对等边三角形通道内球形和扁球形颗粒的惯性迁移进行了数值研究。我们的研究主要关注由雷诺数(Re)和颗粒尺寸(β)量化的流体惯性的影响。我们的观察揭示了两个不同的平衡位置:角平衡位置(CEP)位于靠近角的角平分线上,而面平衡位置(FEP)位于从三角形中心垂直于其一条边的线段上。具有不同初始位置的球形颗粒主要到达FEP。对于最初沿角平分线以特定方向定位的扁球形颗粒,即颗粒的演化轴在平分角度的平面内,它们将沿角平分线迁移以到达CEP,同时以翻滚模式旋转。相反,对于具有不同初始方向和位置的颗粒,它们将采用滚转模式到达FEP。值得注意的是,我们确定了颗粒向FEP迁移的双阶段过程,其轨迹收敛到一个平衡流形,该平衡流形类似于通道的横截面。为了进一步说明在一般初始条件下(除沿角平分线的那些条件外)FEP和CEP之间的转变,我们在(Re,β)参数空间中构建了一个相图。这种转变通常由较大颗粒的尺寸(因为FEP无法容纳它们)或较小颗粒的惯性影响引发。对于FEP,特别是对于中小尺寸颗粒,我们注意到随着Re增加,FEP最初从横截面中心向外移动,随后又向中心返回。这种行为是由作用在颗粒上的三种力的相互作用导致的。这项研究对微流体装置的设计具有潜在意义,为等边三角形通道内颗粒的行为提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验