Zhang Shumin, Zhao Feipeng, Su Han, Zhong Yu, Liang Jianwen, Chen Jiatang, Zheng Matthew Liu, Liu Jue, Chang Lo-Yueh, Fu Jiamin, Alahakoon Sandamini H, Hu Yang, Liu Yu, Huang Yining, Tu Jiangping, Sham Tsun-Kong, Sun Xueliang
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China.
Angew Chem Int Ed Engl. 2024 Mar 18;63(12):e202316360. doi: 10.1002/anie.202316360. Epub 2024 Feb 12.
Halide solid electrolytes (SEs) have attracted significant attention due to their competitive ionic conductivity and good electrochemical stability. Among typical halide SEs (chlorides, bromides, and iodides), substantial efforts have been dedicated to chlorides or bromides, with iodide SEs receiving less attention. Nevertheless, compared with chlorides or bromides, iodides have both a softer Li sublattice and lower reduction limit, which enable iodides to possess potentially high ionic conductivity and intrinsic anti-reduction stability, respectively. Herein, we report a new series of iodide SEs: Li YI (x=2, 3, 4, or 9). Through synchrotron X-ray/neutron diffraction characterizations and theoretical calculations, we revealed that the Li YI SEs belong to the high-symmetry cubic structure, and can accommodate abundant vacancies. By manipulating the defects in the iodide structure, balanced Li-ion concentration and generated vacancies enables an optimized ionic conductivity of 1.04 × 10 S cm at 25 °C for Li YI . Additionally, the promising Li-metal compatibility of Li YI is demonstrated via electrochemical characterizations (particularly all-solid-state Li-S batteries) combined with interface molecular dynamics simulations. Our study on iodide SEs provides deep insights into the relation between high-symmetry halide structures and ionic conduction, which can inspire future efforts to revitalize halide SEs.
卤化物固体电解质(SEs)因其具有竞争力的离子电导率和良好的电化学稳定性而备受关注。在典型的卤化物SEs(氯化物、溴化物和碘化物)中,人们对氯化物或溴化物投入了大量精力,而碘化物SEs受到的关注较少。然而,与氯化物或溴化物相比,碘化物具有更软的锂亚晶格和更低的还原极限,这使得碘化物分别具有潜在的高离子电导率和固有的抗还原稳定性。在此,我们报道了一系列新型碘化物SEs:LiₓYI₃(x = 2、3、4或9)。通过同步辐射X射线/中子衍射表征和理论计算,我们发现LiₓYI₃ SEs属于高对称立方结构,并且可以容纳大量空位。通过控制碘化物结构中的缺陷,平衡的锂离子浓度和产生的空位使得Li₃YI在25°C时的离子电导率优化至1.04×10⁻⁴ S cm⁻¹。此外,通过电化学表征(特别是全固态锂硫电池)结合界面分子动力学模拟,证明了Li₃YI与锂金属具有良好的兼容性。我们对碘化物SEs的研究深入洞察了高对称卤化物结构与离子传导之间的关系,这可以激发未来振兴卤化物SEs的努力。